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ABSTRACT

The evolution of binaries containing low-mass donors (≤ 2M�) and degenerate

accretors (i.e., white dwarfs [0.7M�] or neutron stars [1.4M�]) is systematically

investigated over a wide expanse of parameter space. The donors are assumed to

have metallicities in the range of 0.0001 ≤ Z ≤ 0.02 and could either be unevolved

(ZAMS) or could be ascending the red giant branch (RGB) at the onset of mass

transfer (corresponding to 5 . Porb(hr) . 2 × 103). Each evolutionary track

forms part of a very detailed grid of nearly 200 sequences each corresponding to

a different set of initial conditions. During the initial phases of their evolution,

the systems resemble either Low Mass X-Ray Binaries (LMXB’s) or Cataclysmic

Variables (CV’s). However, as has been pointed out by several authors (e.g.,

Podsiadlowski et al. 2002), the evolutionary tracks can exhibit a wide variety of

behaviors and outcomes. We focus on systems that evolve to produce helium-rich

degenerate dwarfs (HeDD’s) that are either detached or still losing mass after a

Hubble time. Of the systems that avoid dynamical instability, some evolve to

ultrashort Porb’s (< 60 minutes) while others that lie above the bifurcation limit

(which we show to be quite sensitive to the assumed metallicity) produce wide

binary millisecond pulsars (BMSP’s) containing HeDD companions that have

Porb’s of . 2 × 104 hours.

We also show that the mass and composition of the envelopes of HeDD’s

that are about to descend the cooling branch are particularly sensitive to the

input physics and the initial conditions, and this in turn dictates whether they

experience extremely vigorous hydrogen shell flashes. The final structure of the

envelopes plays a critical role in determining the cooling times of HeDD’s. Our
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computed values of the envelope mass, menv (corresponding to the mass of those

layers below the surface containing some hydrogen), typically lie in the middle

of the range of values quoted previously. At late ages we find that the envelope

masses have a dependence on the final donor mass (mf) and metallicity (Z)

that can be expressed as menv ∝ m−2.8
f Z−0.2. Furthermore, for systems that

do not evolve too close to the bifurcation limit, we find that the final orbital

period is given by Porb,f (hr) = 2.5 Z0.3 1010.7(mf/M�). Finally we use our results

to comment on the properties of the optical companions to binary millisecond

pulsars and compare their inferred ages with the spin-down times of the pulsars.

The structure of young HeDD’s should be particularly useful as starting models

for more sophisticated cooling calculations that take into account important long-

term physical processes and thus we are making our models available for retrieval.

Subject headings: − binaries: close − low-mass x-ray binaries − pulsars: millisec-

ond − stars: evolution − stars: mass loss − stars: low mass − stars: hydrogen-

depleted

1. Introduction

Many Cataclysmic Variables (CV’s) and Low Mass X-Ray Binary systems (LMXB’s)

are believed to be interacting binaries wherein a low-mass donor transfers matter to a com-

pact object (a white dwarf or neutron star, respectively). Podsiadlowski et al. (2002; PRP)

showed that many of the donors in LMXB’s may have descended from intermediate-mass

stars2. According to the standard model, the donor star (secondary) overflows its Roche

lobe (RLOF) and matter is transferred (for non-magnetic systems) via an accretion disk

to the surface of the compact object (see, e.g., Warner 1995, and references therein). The

first generation of self-consistent theoretical models describing the evolution of low-mass

systems assumed that the donor was a ZAMS star at the onset of mass transfer (see, e.g.,

Paczyński & Sienkiewicz 1981; Rappaport, Joss, & Webbink 1982 [RJW]; Spruit & Ritter

1983; Rappaport, Verbunt, & Joss 1984 [RVJ]; Hameury et al. 1988, D’Antona, Mazzitelli,

& Ritter 1989). Later models examined the evolution of interacting binaries containing

compact objects under the assumption that the donor was in various states of advanced

chemical evolution prior to the onset of mass transfer (see, e.g., Tutukov et al. 1985; Iben

& Tutukov 1986 [IT]; Pylyser & Savonije 1988 [PS], 1989; Schenker, Kolb & Ritter 1998;

2Since the accretors in LMXB’s (i.e., neutron stars) have higher masses (on average) than those in CV’s

(i.e., degenerate dwarfs), they can accommodate higher mass donors without suffering a dynamical instability.
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Nelson, MacCannell & Davis 2001; PRP). Among other things, they found that sufficiently

evolved donors that did not become giants could evolve to ultrashort orbital periods (< 1

hr) while those that were sufficiently evolved to become (sub)giants would ultimately pro-

duce detached systems containing cooling, HeDD’s in orbit with their compact companions.

For the case of neutron-star accretors, the latter systems end up as wide (nearly circular),

low-mass binary millisecond pulsars [LMBP’s] (see, for example, Alpar et al. 1982, Joss &

Rappaport 1983, and Bhattacharya & van den Heuvel 1991 for a review). The pulsars in

these systems are often referred to as “recycled” because they have been spun up by ac-

cretion torques. The formation and/or cooling of HeDD’s in LMBP’s have been studied by

Alberts et al. 1996, Althaus & Benvenuto 1997, Benvenuto & Althaus 1998 [BA], Hansen &

Phinney 1998a,b [HPa,b], Driebe et al. 1998 [DSBH], Tauris & Savonije (1999) [TS], Saran,

Ergma, & Gerskevits-Antipova 2000 [SEG], Nelson & Davis 2000 [ND], Althaus, Serenelli &

Benvenuto 2001 [ASB], and PRP. By accurately determining the cooling times of the HeDD’s

(and thus the age of the pulsar after it has ‘turned on’), it may be possible to comment on

the spin-down evolution of the pulsars (see HPb). In this paper we analyze the properties

of HeDD’s that are likely to be found in LMBP’s for a very wide range of metallicities (Z)

and masses.

The evolutionary pathways leading to the formation of binaries containing compact ob-

jects is becoming better understood and many of the salient features of these systems (e.g.,

the observed number of systems as a function of the orbital period) have been explained using

population synthesis techniques (see, for example, Howell, Nelson & Rappaport 2001 [HNR];

Willems & Kolb 2002, Pfahl, Rappaport & Podsiadlowski 2003, and references therein).

However, there are still many unanswered questions concerning the formation of these sys-

tems, especially those for which neutron stars or black holes are the compact companions.

With regard to the formation of CV’s it is generally accepted that the compact companion

(i.e., white dwarf) was formed as a result of the “spiral-in” of the companion (secondary)

during a common envelope phase of evolution (see, e.g., Taam, Bodenheimer, & Ostriker

1978; Meyer & Meyer-Hofmeister 1979; Livio & Soker 1988; Webbink 1992; Kalogera &

Webbink 1998; Dewi & Taurus 2000). After the ejection of the common envelope (CE),

the separation between the secondary and the newly formed white dwarf is determined by

energetic considerations. Unfortunately the physics associated with the ejection event is very

complicated but it is expected that (assuming a merger does not occur) the separation of

the two stars would be greatly reduced. If the components are sufficiently close after the CE

phase, magnetic stellar wind (MSW) braking may be able to bring the secondary (now the

donor) into contact with its Roche lobe while it is still a ZAMS star. However, depending

on assumptions concerning the efficiency of orbital energy conversion and the effectiveness

of MSW braking, the post CE separation may be so wide that MSW’s are unable to bring
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about contact. If this is the case, then barring some other form of orbital angular momentum

dissipation, the secondary will only start to lose mass if it expands as a result of nuclear

evolution. The detailed evolution and ultimate fate of the binary system depends on the

magnitudes of the relevant physical timescales (e.g., the mass-loss timescale [τṁ]; the thermal

timescale of the donor [τKH or τenv]; and, the nuclear timescale [τnuc]). Donors for which

τnuc � τṁ have sufficiently short nuclear timescales that they can become giants before

losing too much mass. These latter systems can evolve to very long orbital periods (up to

hundreds of days) before the donors detach from their Roche lobes leaving behind a helium

degenerate dwarf [HeDD] in orbit with a recycled pulsar (e.g., PSR1855+09). For systems

for which τnuc � τṁ, the evolution is governed largely by orbital angular momentum losses

due to gravitational radiation, MSW braking, and systemic mass loss. The delineation of

these two regimes is marked by the bifurcation limit (see, e.g., PS).

Binaries below the bifurcation limit typically evolve from orbital periods on the order of

10 hours to a minimum orbital period (on the order of one hour) and then back to increasing

orbital periods. The theoretical evolution of CV’s has been quite well studied (see, e.g.,

Warner 1995, and HNR for more recent references). If the donor has not had time to evolve

chemically once it commences mass transfer (i.e., it is approximately homogeneous) then

the theoretical models show that it will evolve from long orbital periods (∼ 6 hours for a

1M� donor) to short orbital periods (∼ 1.2 hours) and then back up to periods of ∼ 3

hours given a sufficient amount of time. If the magnitude of magnetic stellar braking is

greatly attenuated when the internal structure of the donor becomes fully convective then it

is possible for the donor to shrink beneath its Roche lobe with the concomitant cessation of

mass transfer (see, e.g., RVJ). Eventually the donor will be brought back into contact with

its Roche lobe as the result of gravitational radiation losses and recommence mass transfer.

This scenario is the most plausible explanation of the so-called 2 - 3 hour “period gap” that

has been observed for CV systems (Kolb, King, & Ritter 1998). Some CV’s and LMXB’s

have orbital periods much smaller than the predicted theoretical minimum orbital period of

approximately 80 minutes and it is thought that some of these systems can be explained

by donors that are hydrogen depleted (see, e.g., Tutukov et al. 1985; Nelson, Rappaport,

& Joss 1986 [NRJ]; Ergma, Sarna & Antipova 1998; PRP; Nelson & Rappaport 2003 [NR];

Podsiadlowski, Han & Rappaport 2003). These include the CV’s such as AM CVn (17.1

min) and LMXB’s such as 4U 1820-30 (11.4 min). Five accreting millisecond pulsars have

also been recently discovered and three have ultrashort orbital periods: XTE J1751-305 (42.4

min), XTE J0929-314 (43.6 min), XTE J1814-338 (43.6 min), and XTE J1807-294 (. 40

min). For some of these systems we would expect that the donor could initially have been

a low-mass star (∼ 1M�), that would necessarily be somewhat evolved (e.g., near TAMS)
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at the onset of mass transfer3. Higher mass donors would not have to be as evolved but

would have to undergo significant nuclear evolution during the mass transfer phase in order

to achieve the necessary degree of hydrogen depletion (see PRP). [We note that for the case

of CV’s with ∼ 0.7M� DD accretors that the initial mass of the donor cannot be much

greater than ∼ 1.5M� since the relatively high mass ratio q ≡ M2/M1 would likely result in

a dynamical instability and the merger of the system.]

In this paper we undertake a detailed exploration of interacting binary systems con-

sisting of compact objects and low-mass donors that are (arbitrarily) evolved at the onset

of mass transfer (either approaching TAMS, or ascending the RGB). A wide expanse of

parameter space has been explored and is complementary to previous work (e.g., PS, HP,

DSBH, SEG, ASB, and PRP). While only one mode of systemic angular momentum loss

is considered, models covering the widest range of metallicities and initial chemical profiles

are carefully calculated. The overall computational effort required more than 1016 floating

point operations and generated more than one terabyte of data (∼ 200 tracks were cal-

culated). Particular attention is paid to the formation and evolution of HeDD’s that are

likely to be found as companions to pulsars in LMBP’s. The properties of these objects are

very sensitive to the assumed input physics and initial conditions. Some HeDD’s experience

vigorous hydrogen shell flashes (due to unstable CNO burning in a thin H-rich layer near

their surfaces) while others experience mild thermal instabilities. The composition and mass

(menv) of the envelopes, the presence of residual nuclear burning and possible shell flashes

can have a significant effect on the inferred cooling times of the HeDD companions (and

thus on the inferred age of pulsar itself). Previous calculations of the cooling properties of

HeDD’s show many similarities (see, e.g., HP, DSBH, SEG, ASB, PRP), but there are also

many significant differences with the present work. We examine them in detail and show

that the dependence of some of the central properties (e.g., menv) can be quantified in terms

of mf and Z.

The basic results of these computations are available for retrieval on the server physics.

ubishops.ca/evolution. Our library of calculations also serve two other purposes. First,

they form part of the library of tracks that constitute the MULTIGRID project which will

ultimately archive more than 5000 evolutionary sequences (Nelson & Dubeau 2004a). The

initial conditions for these sequences will be much more finely spaced (in parameter space),

especially for binaries near the bifurcation limit. This library should make it possible to

carry out binary population syntheses more efficiently (i.e., using interpolation techniques

on existing sequences). Second, the results presented in this paper will also serve as a

3It is important to note that other evolutionary pathways wherein HeDD’s or hybrid HeCO DD’s lose

mass to their neutron star companion could easily be invoked to explain the ultrashort orbital periods.
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“calibration standard” for a new ‘fast-code’ that we are developing to carry out on-the-fly

binary evolution calculations (Nelson & Rappaport 2004). Such fast binary evolution codes

(typically requiring ≈ 1 CPU minute per track) would be of great use to researchers involved

in binary population synthesis studies, and in particular for the MODEST group that is

working on a comprehensive program to study the evolution of globular clusters. The main

advantage of using the fast-code is that individual evolutionary tracks can be calculated (as

opposed to interpolations), thus giving researchers working on binary population syntheses

more flexibility (e.g., angular momentum dissipation can be arbitrarily adjusted).

In §2 of this paper we describe the input physics that was used to carry out the

computations. We also describe the calculation of the evolutionary sequences in detail as

well as the range of initial conditions that was investigated. In §3 we present the results

of the computations including the evolution of donors through the HR diagram and the

evolution of their observable properties. We also discuss the effects of the input physics on

the bifurcation limit and explore some of the issues associated with hydrogen shell flashes

and show how the dependence of certain important properties can be quantified. In §4 we

look at specific applications to observed binary systems. Our conclusions and plans for future

work are summarized in the final section.

2. Methodology

All of the binary evolution calculations described in this paper were carried out using

the Lagrangian-based Henyey method. The basic code has been described in several papers

(see, e.g., Nelson, Chau & Rosenblum 1985; Dorman, Nelson & Chau 1989) and has been

extensively tested. In the version of the code that was used to produce the calculations

presented in this paper, we took the donor star to be spherical and used the volume-averaged

radius formula of Eggleton (1983) to relate to the orbital separation A and volume-averaged

radius R2 of the donor (secondary) star. In terms of the mass ratio q (≡ M2/M1), this

formula can be expressed as

R2

A
=

0.49q2/3

0.6q2/3 + ln(1 + q1/3)
. (1)

For small values of q (. 0.1) this approximation for R2/A is more accurate than that derived

using the method of Chan and Chau (1979; the difference in the two estimates is ∼ 2 %).

The most important refinements in the code are due to improvements in the input physics,

particularly the opacities. We use the OPAL radiative opacities (Iglesias & Rogers, 1996;

Grevesse 1993 composition) in conjunction with the low-temperature opacities of Alexander

& Ferguson (1994), and the Hubbard & Lampe (1969) conductive opacities. Evolutionary
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calculations such as the ones presented in this paper require that the independent variables

(e.g., T , ρ, and chemical composition) describing the properties of the donors span many

orders of magnitude. Great care has been taken to ensure that each of these opacities

blends smoothly across their respective boundaries of validity. Our treatment also enforces

continuity of the respective first-order partial derivatives.

The equation of state (EOS) that is used is a combination of an analytic EOS for

arbitrary mixtures of hydrogen, helium, and heavier elements that was matched to the Magni

& Mazzitelli (1979) EOS for helium. The analytic EOS includes the effects of molecular

hydrogen formation, radiation pressure, arbitrarily relativistic electron degeneracy, and an

approximate treatment of pressure ionization. The effects of plasma neutrino cooling due

to the method of Itoh et al. (1990) are also included in the computations. Since pressure

ionization and Coulombic (plasma) coupling can be extremely important considerations in

determining the detailed structure of the interiors of low-temperature (and low-mass) stars,

we generally terminated our evolutionary sequences once the mass of the donor has dropped

to . 0.1M�. We find that the treatment of pressure ionization can have a very significant

effect on the computed properties of all low-mass models (. 0.2M�). This issue is addressed

in more detail by NR who used the Saumon, Chabrier & Van Horn (1995) EOS to evolve

very low-mass, cold, donors.

Special attention is paid to ensuring high accuracy in the calculation of the structure of

the outer layers (i.e., the envelope). These outer layers primarily determine the cooling times

of the helium-rich remnants. The fitting point that delineates the interior structure (solved by

a relaxation technique) from the envelope (solved by a Newton-Raphson integration under

the assumption of a constant luminosity) was determined adaptively; in some cases, the

fractional mass of the envelope is as small as 10−6 (= 1 −menv/Mstar). While this increases

the number of shells needed to describe the interior structure, it decreases the inaccuracy that

is caused by the assumption that the ‘gravothermal’ contribution to the luminosity (i.e., Lg)

in the envelope is zero. Moreover, hydrogen shell flashes can occur very close to the surface

(within the outer 1% of the mass of the star) and consequently many (thin) shells above the

burning region are needed to ensure high accuracy. We also require that only a small amount

of mass be removed from the donor star in each time step. In particular, we ensure that

∆M2 (i.e., the mass stripped from the donor in a given time step ∆t) is approximately of

the same order of magnitude of the mass in the first few shells below the envelope. For this

reason ∆M2 was typically less than 10−5M� per model (and much smaller near the cessation

of mass transfer). Consequently each evolutionary track typically consisted of more than 105

models and sometimes surpassed 106 models. For particularly rapid phases of evolution (i.e.,

hydrogen shell flashes) the evolutionary timesteps sometimes had to be reduced to values on
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the order of hours. The thermal relaxation time of a shell of mass msh may be defined as

τsh ' GM2 msh

R2 L2
, (2)

where M2, R2, and L2 are the mass, radius, and luminosity of the donor, respectively. It is

important to note that some of the outer shells have extremely short relaxation times, and

thus by choosing inappropriately large timesteps, the growth of thermal instabilities could

be numerically suppressed or inhibited. This in turn may have a significant effect on the

long-term evolution of the remnant donor star and the final mass and composition of its

envelope.

The parameter space needed to fully investigate the evolution of this type of binary

system is inherently five dimensional. The vector of parameter space contains the following

elements: (i) the initial mass of the donor (M2,o); (ii) the initial mass of the accretor (M1,o);

(iii) the initial chemical profile of the interior of the donor star; (iv) the metallicity of the

donor (Z); and, (v) the mode of angular momentum loss that drives mass transfer and the

degree to which systemic mass loss occurs. The resolution of the grid of models is simply

constrained by the available computing power. We calculate approximately 200 evolutionary

tracks corresponding to initial donor masses of M2,o = 1, 1.5, and 2M�, while the masses

of the accretors are taken to be M1,o = 0.7 (i.e, a mass appropriate for a degenerate dwarf

[DD] accretor in a CV) or 1.4M� (i.e, a mass appropriate for a neutron star in an LMXB).

The initial chemical profile of the donor is parameterized in terms of either Xc,o or mc,o.

The initial central hydrogen mass fractions (at the onset of mass transfer) are taken to be

in the range of 0 ≤ Xc,o ≤ 0.71. For the cases corresponding to zero central hydrogen,

the helium core masses are in the range of 0 ≤ (mc,o/M�) ≤ 0.40. The initial hydrogen

abundance (by mass) on the ZAMS is taken to be equal to 0.71, the ratio of the mixing

length to the pressure scale-height ratio (l/Hp) is set equal to 1.5, and the metallicity is

chosen to be representative of Population I and II stars. Specifically we calculate models of

donors whose metallicity is Z = 0.0001, 0.004, and 0.02. The number of shells needed to

adequately describe the interior structure varies enormously depending on the evolutionary

state of the donor. For example, when the donor is not very chemically evolved or when

it is in a cooling stage (having detached from its Roche lobe), then only a couple hundred

shells sufficed. However, during complicated and/or rapid phases of the evolution (e.g., near

helium flash) sometimes more than 3000 shells are needed. For the sake of accuracy, we do

not use “shell shifting” methods to approximate thin-shell H-burning.

It is assumed that gravitational radiation and MSW braking are responsible for orbital

angular momentum losses. Angular momentum losses due to gravitational radiation are cal-

culated using the Landau-Lifshitz (1962) radiation-reaction formula. This can be expressed
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as

J̇GR

J
= −8.3 × 10−10

[m1m2mT

a4

]

yr−1 , (3)

where the variables m1, m2, and mT (= m1 +m2) are given in solar units, and a is the orbital

separation in units of R�. We use the RVJ parameterization of the Verbunt-Zwaan (1981)

braking law (i.e., J̇MB ∝ Rγ
2 where γ is a dimensionless number). This can be expressed as

J̇MB

J
= −2.3 × 10−6fMB

[

m2
T rγ

m1 a5

]

yr−1 , (4)

where r = R2/R� and fMB is a dimensionless function that takes into account the moment

of inertia of the donor (its magnitude is of order 0.1). For the present investigation, we set

γ = 3 since this value approximately reproduces the observed period gap in the distribution

of CV orbital periods. The exact value of the radius of gyration of the donor star is calculated

using the computed internal structure of the donor. We do not, however, interrupt magnetic

braking if the interior structure of the donor becomes completely convective (for a discussion

of this issue see HNR, and references therein). We note that chemically evolved donors will

temporarily stop transferring mass at relatively shorter orbital periods (i.e., less than three

hours) and that the width of the gap will also be smaller (see NR for more details). Finally

we caution that the magnitude of the magnetic braking torques acting on these donors are

not very well known.

Mass transfer is assumed to be completely non-conservative. We thus set the mass-

capture fraction (i.e., β ≡ Ṁ1/|Ṁ2|) equal to zero, and assume that the matter lost from the

system is lost rapidly and isotropically and that it carries away a specific angular momentum

equal to that of the compact accretor (i.e., fast Jeans’ mode). We note that this assumption

is probably very well warranted in the case of CV’s during phases of evolution when the mass

transfer rates are . 5 × 10−9M�/yr (see, e.g., Prialnik & Kovetz 1995). At this rate, the

matter accreted onto the surface of the degenerate dwarf does not experience steady burning

but rather undergoes a series of thermonuclear explosions (i.e., nova events). It is even

possible that the DD is eroded during these events (i.e., β < 0). However, during certain

phases of evolution (e.g., thermal timescale mass transfer) it may be possible for the mass

capture fraction to be significantly greater than zero (0 < β < 1). With regard to neutron

star companions (in LMXB’s and related systems), the situation is much less clear. Systemic

mass loss may occur due to inefficient accretion which could be caused by a wind emanating

from the atmosphere of the disk due to high radiation pressures or could be the result of

relativistic jets. A theoretical study of the evolution of LMXB’s by Tauris & Savonije (1999)

led them to conclude that a substantial fraction of material is ejected even when the neutron

stars are accreting at sub-Eddington levels (they suggest disk instabilities or the propellor
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effect as the cause). Based on observational studies of pulsars in all types of binary systems

(e.g., Joss & Rappaport 1976; Thorsett & Chakrabarty 1999) we see that their masses are

fairly tightly clustered in the range of ∼ 1.3 − 1.8M�. We would expect millisecond pulsars

(P < 10ms) to be more massive than they were at birth (accretion torques having spun

up the pulsar). While there is some statistical evidence to support this claim, the most

precisely determined millisecond pulsar masses are 1.58±0.18M� for PSR J0437+4715 (van

Straiten et al. 2001) and 1.57
+0.12M�

−0.11M�
for PSR B1855+09 (Nice et al. 2003). This would

certainly seem to imply that accretion is inefficient (i.e., β < 1) and may even be consistent

with ∼ 0, but we caution that its value is highly uncertain. We adopt β = 0 as a limiting

case but also recognize that it needs to be somewhat larger if the neutron star accretors are

to be spun up to millisecond periods (they probably need to accrete ∼ 0.1M�). For the

purposes of comparison, we have calculated the evolution of a large number of tracks under

the constraint of purely conservative mass transfer (i.e., β = 1). We show that for most

cases the evolution of the donor star is not greatly affected by this constraint (see §3.1.2 for

detailed information).

We have not included the effects of X-ray irradiation on the donor. Some previous

calculations have suggested that the effects are small in LMXB’s due to absorption by the

accretion disk (and possibly a self-excited wind surrounding the disk). Unfortunately the

overall importance irradiation in CV’s and LMXB’s is not well understood. The magnitude

of the mass-loss rate due to stellar winds emanating from the donor is also subject to large

uncertainties. The most widely used formula is that due to Reimers (1975) but is largely

empirical and is best suited for stars ascending (but not near the tip of) the AGB. These

issues are discussed in much greater detail by Willson (2000). The effects of winds on the

formation and evolution of LMBP’s are discussed in §3.3.

3. Evolutionary Results

3.1. Overview

Depending on the initial separation (A) of the binary components after the CE phase

of evolution and on the effectiveness of magnetic braking, the differences in the degree of

nuclear evolution that has occurred in the donor at the onset of mass loss can be substantial.

For example, if the accretor and donor are relatively close to each other after the binary has

been formed (or magnetic braking is highly efficient in establishing contact), the donor will

not have had much time to evolve before filling its (critical) Roche lobe and thus its value

of Xc will be ∼ 0.7 when mass transfer first occurs. If the binary is formed with a relatively

wide separation, the donor may become a giant (with a large core mass) by the time that
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it fills its Roche lobe. Thus the initial chemical profile of the donor (at the onset of mass

transfer) is correlated with the orbital separation at the end of the CE phase.

In order to investigate the effects of different initial states (i.e., chemical profiles of the

donor) on the evolution of these interacting binary systems, we allow single stars to evolve

from the ZAMS to the tip of the red giant branch (i.e., just before the ignition of helium

burning). The donor is then brought into contact with its Roche lobe at various points during

its chemical evolution (parameterized in terms of Xc and mc). For donor stars without cores

at the onset of mass transfer, our evolutionary tracks are typically calculated for intervals of

0.10 in Xc, and in increments of 0.05M� in mc for donors that have developed cores. The

initial orbital periods range from ∼ 5 to more than 2000 hours. Since many of the tracks

are qualitatively similar, we will not present all of the results but will instead discuss the

salient features associated with the metallicity dependence, initial chemical profiles, and the

correlation between the final properties (e.g., Porb) and the initial ones. Detailed numerical

information for many of the sequences can be found in Tables 1 and 2. In Table 2 the

properties of the donor stars are compared for a fixed luminosity of log(L/L�) = −1.5.

In Figures 1-3 we present the evolutionary tracks of 1M� donors in the HR diagram for

Z = 0.02, 0.004, and 0.0001, respectively. The tracks of donors whose initial mass is 1.5M�

are shown in Figures 4-6 for the same respective metallicities. In both figures the mass of

the accretor is 1.4M�. The most striking features of these figures are: (i) the very distinct

bifurcation in the evolutionary tracks (above the limit donors ascend the RGB and produce

DD remnants while below the limit donors evolve to ever decreasing luminosities); and, (ii)

the occurrence of vigorous hydrogen shell flashes while the donors are about to descend the

cooling branch (in the figures, shell-flash tracks are not explicitly shown but begin and end

between the dotted lines; see §3.2 for more information). Both of these features have been

noted previously in several papers and will be discussed in more detail.

According to Figure 1 we see that donors having initial values of Xc = 0, 0.1, and 0.3

(Xc = 0 being equivalent to Mc = 0) exhibit very different evolutionary behaviors compared

to donors that have developed helium cores. The dividing line between these two types of

evolution is known as the bifurcation limit. Below the limit the donors lose mass sufficiently

rapidly that they never develop a core and thus evolve towards increasingly lower luminosities

and effective temperatures. Furthermore, if the mass-transfer timescale is longer than the

thermal timescale, the donor will remain in approximate thermal equilibrium and will evolve

down the main sequence as its mass is reduced. Below the H-burning limit (∼ 0.08M�),

the donor begins to evolve towards the degenerate branch. During the early phases of mass

transfer its radius continuously decreases leading to a decrease in Porb (see, also Figures 8

& 9). This trend changes when the donor masses are . 0.1M� and electron degeneracy
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dominates the EOS. For unevolved donors (Z = 0.02) a minimum orbital period of ∼ 1.2

hours is attained (see RJW); the minimum Porb can be much smaller if the donor is more

evolved and thus more H-deficient (see, e.g., NR and references therein). As can be seen in

Figure 8, the initial values of Porb that lead to evolution below the bifurcation limit are . 20

hours for a solar metallicity (the values are somewhat smaller for lower-mass donors).

For larger core masses (≥ 0.05M�; Z = 0.02), τnuc << τṁ thus making it possible for

the donors to evolve through the subgiant phase and form helium cores. For many of these

donors, their luminosities increase by more than an order of magnitude while simultaneously

losing more than one-half of their mass. The H-burning shell continues to burn outwards

thereby increasing the mass of the core. As is well-known, the properties of red giants are

dictated primarily by their core masses (mc) and not by the mass of the stars themselves or

by the mass-transfer rate, Ṁ2 (see, e.g., Kippenhahn & Weigert 1990). A number of authors

have used this result in the context of interacting binary evolution to show how wide LMXB’s

evolve and to determine the relationship between the orbital period and core mass (see, e.g.,

Webbink, Rappaport, & Savonije 1983, Joss, Rappaport, & Lewis 1987, and Rappaport et

al. 1995). The value of the final core mass when the donor detaches from its critical Roche

lobe is largely governed by the mass-transfer rate.

Eventually the donor loses so much mass that its total mass becomes comparable to

the mass of the core itself. The remaining hydrogen-rich envelope contains so little mass

that it is not sustainable (see Table 1 for values of menv
4). Since the largely adiabatic

temperature gradient can no longer be supported, the envelope rapidly contracts towards a

radiative equilibrium configuration. Mass transfer ceases and the donor subsequently consists

largely of a helium core (0.15 . (Mc/M�) . 0.45) on top of which resides an extremely thin

hydrogen-rich envelope (menv & 10−2M�). The donor quickly moves to the left in the HR

diagram at roughly constant luminosity. This important phase in the evolution which lasts

from between ∼ 106 to 108 years corresponds to the nearly horizontal parts of the tracks seen

in Figures 1-6. The donors’ radii can decrease by between one to two orders of magnitude.

Hydrogen burning continues and the value of menv can be substantially reduced (to evaluate

this reduction compare the values of menv in Tables 1 & 2). Since the core is always much

more massive than the envelope, the core mass is almost constant during the horizontal

phase and enforces a more or less constant rate of burning (i.e., a constant Lnuc) until the

maximum value of Te is attained. This value is largely governed by the core mass itself.

Larger mc’s have higher luminosities and smaller (degenerate) radii and thus their values of

Te,max are higher. The turnaround in Te also leads to a precipitous decrease in the bolometric

4
menv is defined as the mass below the donor’s surface above which the value of X is greater than zero.
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luminosity and an abrupt increase in the ratio of Lg/Lnuc (the ratio increasing by more than

a factor of 100). Further contraction of the envelope leads to (partial) adiabatic heating of

the H-rich layer just above the H-depleted core. Depending on the core mass and metallicity,

the H-burning shell can either: (i) undergo a mild thermal readjustment; or, (ii) undergo

a H-shell flash (unstable CNO burning). If the hydrogen re-ignites, the donor sometimes

expands so much that it fills its Roche lobe causing further mass transfer (in contrast to the

present work, this possibility was not accounted for in the models of DSBH). Eventually the

thermonuclear runaway is quenched and the donor’s envelope collapses. It is possible for

the donor to go through several cycles before nuclear burning is permanently extinguished

(an extensive discussion of the details and a comparison with previously published results

can be found in §3.2). After the final flash, the donor is destined to cool and approach its

zero-temperature configuration.

Tracks corresponding to “intermediate mass” cores (see Figures 1-6) experience strong

H-shell flashes. While the intermediate-mass cores do experience significant (multiple) ther-

mal pulses, the low-mass cores are relatively unaffected. The reason that they do not expe-

rience runaways is probably due to the fact that their interiors tend to be colder and since

pp burning is less sensitive to temperature, local nuclear energy generation cannot raise

the temperature sufficiently quickly to induce a runaway. For the higher mass cores, the

growth time of the burning instability and the thermal relaxation time of the envelope are

comparable and thus unstable burning is quickly quenched.

After the “thermal pulse” phase is complete, the temperature in the envelope has risen

sufficiently (especially for the low-mass cores) that the ratio of Lg/Lnuc has dropped below

unity. Thus the cooling phase of HeDD’s is different from that of CO DD’s in that H-

burning (via the pp-chain) can constitute an important fraction of the radiated energy for

many billions of years. The inferred cooling times can be significantly different compared to

models for which nuclear burning has been neglected (the importance of this phenomenon

was first noted by DSBH). Even up to a Hubble time after the detachment of the donor from

its Roche lobe, we find that the ratio of Lg/Lnuc remains below unity for many of our low

core-mass cases (e.g., mc < 0.25M�; Z = 0.02). For our highest core-mass cases, the ratio is

< 1 for more than 1 Gyr. Consequently the low-mass DD’s can have considerable thermal

energy (i.e., finite entropy) even after a Hubble time (see also Figure 15). The retardation

of cooling can have a significant effect on determining the ages of LMBP’s (see §4).
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3.1.1. Metallicity Dependence

The dependence of the evolution on the metallicity is illustrated in Figure 7. One set

of curves (for each of the three metallicities) corresponds to donors whose masses are equal

to 1M� and whose values of mc = 0 at the onset of mass transfer. The other set corresponds

to the mc = 0.20M� cases. Because the low-metallicity models tend to be hotter and smaller

in radius, they evolve more quickly than their high-metallicity counterparts. Consequently

the Z = 0.0001 case evolves sufficiently quickly (relative to the mass-transfer timescale)

that it can create a core and ultimately evolves to become a HeDD. The Z = 0.004 donor

starts to form a core (and temporarily attains higher Te’s) but ultimately loses too much

mass and evolves to ever decreasing luminosities and temperatures. For the Z = 0.02 case,

the mass transfer timescale is much shorter than the nuclear one and further growth of the

core is stymied. The mc = 0.2M� tracks lead to the formation of well-developed cores and

ultimately HeDD’s. The Z = 0.0001 track is initially hotter and more luminous than the

higher metallicity ones. It experiences a vigorous shell flash while the Z = 0.004 model

experiences a mild thermal pulse. A very mild thermal readjustment is also visible in the

track of the Z = 0.02 model. Once the models descend the cooling branch for the final

time, we see that the lowest metallicity models are also the smallest in radius. The same

qualitative behavior is observed for the tracks of systems with initially higher-mass donors.

The masses for which shell flashes can occur are also sensitive to the metallicity and this

dependence will be addressed in §3.3.

3.1.2. Orbital Periods

Sample results of the evolution of Porb with respect to the mass of the donor are shown

in Figures 8 & 9. In Figure 8 all of the curves correspond to an initial donor mass of 1.5M�

with Z = 0.02 and various values of Xc and Mc. In Figure 9 all of the curves correspond

to an initial donor mass of 1.5M� with Z = 0.0001. There is a distinct bifurcation in the

behavior of the orbital periods (this phenomenon has been investigated in great detail by

PS, SEG, and PRP). Donors that ascend the RGB develop well-defined cores, become larger

in radius and naturally evolve to higher periods. Donors for which mass loss is very rapid,

evolve to smaller radii and Porb’s. The orbital period reaches a minimum value as the donor

evolves towards the degenerate branch (and their radii increase). We note that it is possible

for the minimum period to be as short as 8 minutes (see PRP and NR) but the minimum

value that we calculate based on our grid of initial conditions is ∼ 20 minutes. Periods as

short as these occur because the donors are very H-depleted and electron degenerate. As

was observed in Figures 1 - 6, the same systems that evolve above the bifurcation limit are
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the same ones for which we see the orbital periods increasing. As will be shown in §3.4,
there is a strong correlation between the final orbital period (Porb,f ) and both the initial

orbital period (Porb,o) and mf for donors that have well-developed cores. We also see that

binaries that develop cores close to the classical helium-flash value (i.e., ∼ 0.46M�) evolve

to extremely long orbital periods in excess of 104 hours. It is also interesting to note that

the initial range of Porb’s for which the bifurcation occurs is moderately dependent on the

metallicity. For example, taking M2,o = 1M�, M1 = 1.4M�, and Z = 0.02, we find that the

bifurcation occurs between 13 . Porb,o . 16 hours and for Z = 0.0001 we find the range to

be 8 . Porb,o . 11 hours.

Since the bifurcation limit is a very sensitive function of the assumed input physics

it is not surprising that the assumption of fully conservative mass transfer (i.e., β = 1)

leads to different limits. We analyzed the evolution of a large number of representative

systems (Z = 0.02, 0.0001) assuming conservative mass transfer. The evolutionary tracks of

the donors that evolve well above the bifurcation limit are qualitatively very similar to the

corresponding cases calculated assuming completely non-conservative mass transfer. We see

that in most instances the effect on Porb and on the evolutionary properties of the donor is

relatively small. For example, at a given mass, the orbital periods always agree to within

∼ 40% (the maximum deviation occuring for the largest periods) and the final donor masses

at the point of Roche-lobe detachment from the RGB vary by only a few percent. A typical

case corresponding to M2,o = 1.0M�, mc,o = 0.135M�, and Z = 0.02 is shown in Figure

10. The evolutionary tracks of the donors in the HR diagram for these two extreme cases

are offset during the donors’ transition from the RGB (end of mass-loss) to the final cooling

phase. It should also be noted that the physical properties (e.g., internal thermal profile)

of donors undergoing conservative and non-conservative mass transfer are also very similar.

Because of the sensitivity of the bifurcation limit to the physical inputs, we find that donors

undergoing conservative mass transfer can be less evolved at the onset of mass loss and still

produce HeDD’s (e.g., Xc = 0.05 as opposed to Xc = 0.0 for M2,o = 1.5M� and Z = 0.02).

The same trend holds true for the low-metallicity case (Z = 0.0001).

3.1.3. Interior Properties

For systems that evolve above the bifurcation limit, the values of the central temper-

ature (Tc) and central pressure (Pc) rise monotonically while the donors are ascending the

giant branch. Once mass transfer stops, the magnitude of Pc continues to increase gradually

due to the contraction of the core and envelope, and the central temperature drops as the

donor cools. One exception occurs when donors undergo shell flashes. For those cases, the
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value of Tc can increase by a few percent but the effect is minimal. The temperatures inside

the cores are not sufficiently high for neutrino fluxes to account for significant energy losses.

Neutrino losses are completely unimportant except for high mass cores (& 0.4M�). We also

note that crystallization does not occur in the interiors of any of our models and is not likely

to occur for any model that is allowed to cool for a Hubble time. This result is consistent

with the analysis of the cooling of pure-helium (Z = 0.003) degenerate dwarfs by ND who

found that these faster cooling models never crystallize within a Hubble time (see also HPa).

3.1.4. Mass-Transfer Rates

The mass loss rates from a representative set of donors (M1 = 1.4M�) with a solar

metallicity is shown in Figure 11. Note that if we assume that the accretor is a neutron

star, some phases of the evolution (for certain initial conditions) lead to super-Eddington

luminosities (corresponding to ṁ’s of & 2 × 10−8M� yr−1). A potentially important and

observable feature of these evolutions results from the fact that the donors can become de-

tached temporarily while evolving up the RGB (they correspond to the relatively pronounced

dips seen in the curves). Whether or not this phenomenon occurs primarily depends on the

evolutionary history of the envelope’s convective zone; if a large hydrogen abundance gra-

dient (or discontinuity) exists and if the H-burning shell passes through it, then the donor

will contract on its Kelvin-Helmholtz timescale and mass transfer will cease temporarily.

After the shell becomes equilibrated, the donor resumes its expansion causing mass trans-

fer to recommence. This phenomenon occurs in models for which 0.05 . mc,o/M� . 0.25

(Z = 0.02; see Figure 11), and we find that the range decreases with decreasing metallicity.

3.2. Hydrogen Shell Flashes and the Cooling of HeDD’s

After the donor has evolved horizontally in the HR diagram and reaches its maximum

value of Te, it begins to descend the cooling branch (i.e., evolving towards lower luminosities

and effective temperatures). However, as the envelope5 continues to contract, the temper-

ature at the base of the envelope (adjacent to the He-rich core) can rise due to partial

adiabatic compression. If the density of the gas above this layer is sufficiently high that

radiative transport cannot efficiently transport the heat outwards, a temperature inversion

can occur. Given the extreme sensitivity of the CNO cycle to temperature and the inability

5We defined the mass of the envelope menv to be the mass of those layers directly below the surface that

contain a non-zero abundance of hydrogen.



– 17 –

of the outer layers to transport the heat sufficiently quickly, a thermal runaway can ensue.

Typically shell flashes develop in a layer of H-rich gas that is only mildly electron degenerate

(Ψ ≡ µelectron/(kT ) ≈ 0).

As has been shown by a number of authors (e.g., Kippenhahn & Weigert 1967, Webbink

1975, Iben and Tutukov 1986 [IT], DSBH, SEG, ASB, PRP) the envelope can, under certain

conditions, be thermally unstable and one or more vigorous hydrogen shell flashes can occur.

There is considerable disagreement however concerning the range of helium core masses for

which shell flashes occur and the amount of hydrogen that resides in the envelope before

and after the flashes. Many of these differences can be attributed to marked differences

in the treatment of the physical processes within the donor star and the secular evolution

of the binary itself). One of the first investigations of the evolution of He-rich dwarfs was

carried out by Webbink (1975) who evolved extremely low-mass main-sequence stars (a few

tenths of a solar mass) for many Hubble times until they turned off the RGB. He found

that some of them experienced mild H-shell flashes. Alberts et al. (1996) investigated the

properties of J1012+5307 by evolving low-mass HeDD’s (∼ 0.25M�) and found that none of

the models experienced shell flashes. The models of BA and HPa showed nuclear burning to

be insignificant during the evolution of the remnant. This is probably due to the fact that

the H-rich envelopes that they used were not evolved from the RGB, but instead specific

values of menv were adopted. HPa used the ∼ 0.3M� HeDD model of IT for which the

envelope mass was 3 × 10−4M�. BA considered a wide range of possible masses such that

3 × 10−4 . (menv/M�) . 1 × 10−8. These envelope masses are very small compared to the

ones calculated to using more recent self-consistent binary evolution models and this probably

explains the discrepancy. DSBH were the first to point out the importance of nuclear burning

in retarding the cooling of HeDD’s but their method of calculating starting models was

obtained by rapidly stripping mass from a star ascending the RGB. Since their calculations

did not pertain to the evolution of a binary system, they did not allow for the possibility

of mass-loss from the donor during H-shell flashes. Nonetheless, they concluded that shell

flashes (for a solar metallicity) can occur for a HeDD mass range of 0.21 . M/M� . 0.3.

The results of SEG were based on a self-consistent binary evolution calculation for low-mass

HeDD’s (≤ 0.25M�) and they showed that some models could overflow their Roche lobes

during shell flashes and further determined the mass dependence for several metallicities

(0.003 ≤ Z ≤ 0.03). For Z = 0.02 they found that the minimum mass of a HeDD that

would undergo shell flashes was 0.192M�. The occurrence of shell flashes causing mass

transfer was also noted by PRP who evolved a grid of solar metallicity models under the

assumption that β = 0.5. ASB recently revisited the issue of shell flashes and their effects on

the cooling of solar metallicity dwarfs. They adopted the method of DSBH to obtain starting

models (i.e., rapid mass loss from RGB stars). They showed that chemical diffusion can play
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an important role in inducing shell flashes and they find that the mass range for which flashes

occur is considerably wider than previously thought (i.e., 0.18 . mf/M� . 0.41). This has

the net effect of accelerating the cooling for models in this mass range. It should be noted,

however, that diffusion is an extremely fragile process and that turbulence can mitigate its

effects.

Our computations do not match any previously published results but share many of the

distinct behaviors reported in those papers. For example, we find a finite range of remnant

masses for which hydrogen shell flashes can occur and that this depends quite strongly on

metallicity. In this regard our results are in reasonably good agreement with DSBH (for a

solar metallicity we find that flashes occur for masses in the range of 0.21 . mf/M� . 0.28).

But we also examine how this range depends on the donor’s metallicity. For extremely metal-

poor donors (Z = 0.0001), we find that flashes occur in a substantially higher mass range

of 0.30 . mf/M� . 0.36. Similar to the findings of SEG and PRP, we find that multiple

“cyclic” shell flashes are possible (also reported by DSBH, and ASB) and that in some cases,

the HeDD overflows its Roche lobe causing mass accretion onto the compact companion.

One of the important distinguishing features between sets of models pertains to dif-

ferences in envelope masses. The earlier models tended to have very small values of menv

while the ones calculated using binary models tended to have much larger values (at least

at the point where the donor turned off from the RGB). For example, SEG typically found

(initial) envelope masses of between 1 − 6 × 10−2M� while DSBH found masses of between

∼ 2 − 50 × 10−3M�. Smaller values were calculated by ASB who chose for each case to

tabulate their values at the maximum effective temperature; they found envelope masses

of between ∼ 0.7 − 10 × 10−3M�. Our range of envelope masses places us between the

higher-mass values of PS (0.01 − 0.02M�) and SEG, and the lower-mass ones of IT, BA,

DSBH, and ASB. Our final values of menv (determined at log(L/L�) = −2) can be accu-

rately quantified using a power-law formula that is a function of the mass of the HeDD (mf)

and Z (see §3.3). For a solar metallicity, we find that the final values lie in the range of

0.0005 . menv/M� . 0.015. The values are only weakly dependent on the initial masses of

the donor (M2,o) and the accretor (M1,o).

The evolution of a donor whose initial properties at the onset of mass loss correspond to

M2,o = 1.0M�, mc,o = 0.15M�, and Z = 0.02 is shown in the HR diagram (Figure 12). After

the donor detaches from its Roche lobe (point 1), it evolves at almost constant luminosity

until it reaches its maximum effective temperature (point 2). It then begins its descent down

the cooling track but experiences a thermal instability corresponding to point 3 in the figure.

The resulting thermal pulse causes the luminosity to increase and readjust. At point 4 in the

figure, the donor is sufficiently large that it fills its Roche lobe thereby causing a brief episode
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of mass transfer during which time its radius is almost constant (because ∆m/M2 << 1).

This phase of mass transfer is denoted by the dotted line in Figure 12. At point 5, the

donor detaches and begins a new phase of cooling. Along the way it suffers further thermal

instabilities and at point 6 it descends the cooling track at approximately constant radius.

During the mass loss phase, ∼ 0.00032M� is lost from the envelope. Although this is a small

amount of mass, it is a non-negligible fraction of menv. It is the mass and composition of the

envelope that will ultimately govern the cooling evolution of the HeDD. Roche lobe overflow

does not occur for the majority of the H-shell flashes that we computed, but it cannot be

neglected.

It is interesting to note that if thermal instabilities do occur, they are initiated for very

similar values of luminosity (assuming a fixed metallicity) and are only weakly dependent on

the initial mass of the donor. This property can be seen in Figures 1-6, and is evident

in Figures 13 and 14. In Figure 13 the luminosity is plotted against the elapsed time

defined from the point where the initial detachment of the donor from its Roche lobe (near

the RGB) occurs. For all curves, the initial mass of the donor was M2,o = 1M� and the

metallicity was solar. The five curves correspond to mc,o’s ranging from 0.05M� to 0.25M�

in increments of 0.05M�. The 0.05M� case is a good example of a multi-cyclic flash for

which the donor experiences numerous thermal instabilities. These flashes persist for ∼ 0.25

Gyr. We immediately see that these flashes can have a profound effect on the estimation of

the ages of young pulsars based on the cooling times of the donors. The mc,o = 0.10M� case

produced a HeDD with a higher mass (0.231M� compared to 0.216M�) and experienced two

significant flashes at a much earlier age. The only other model that produced an unequivocal

example of hydrogen shell flash corresponds to the mc,o = 0.15M� case. The higher (initial)

cores mass cases (mc,o = 0.2M�, 0.25M�) experience mild thermal pulses but no unstable

hydrogen burning. The corresponding evolution of the radius of 1M� donors (Z = 0.02)

is presented in Figure 15. The radius of the donors experiencing shell flashes increases

dramatically during the event(s), while weak thermal pulses result in small readjustments.

Figure 14 illustrates the evolution of the luminosity for solar metallicity models but

for which the initial donor mass is 1.5M�. The mc,o = 0.05M� case corresponding to a final

HeDD mass of 0.209M� does experience a thermal pulse but avoids unstable burning. The

next three values of core mass mc,o = 0.10, 0.15, 0.20M� do experience vigorous shell burning

events. For each case, the events are initiated in the same range of luminosities as was seen

for the 1M� donors. In fact, for all initial donor masses with solar metallicities we find that

thermal instabilities are initiated for luminosities in the range −0.6 . log(L/L�) . −0.2.

In Figure 16 hydrogen shell flashes are compared for all three metallicities under the

assumption that the initial donor mass was 1M� and that the initial core mass was 0.15M�.
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All three cases exhibit shell flashes with the metal poor donor undergoing flashes after

approximately 1.5 × 107 yr. Although the masses of the HeDD’s are not the same, the

lower metallicity models evolve faster, in general, and thus experience shell flashes earlier

and subsequently cool more quickly. The solar metallicity model undergoes a flash at a later

time (6× 107 yr) and cools more slowly. This figure also shows that the critical luminosities

for which thermal instabilities occur is very metallicity dependent. Low metallicity models

experience (the first) thermal pulses at much higher luminosities. We find that shell flashes

for Z = 0.02 are initiated in the range of −0.6 . L/L� . −0.2, and for Z = 0.0001 occurs

for the range of 0.3 . L/L� . 0.9. Another difference that occurs for low-Z models is that

some of the relatively low-luminosity H-shell flashes result from unstable pp burning (as

opposed to CNO burning).

In Figure 17 we examine the cooling evolution of the donor as a function of its age from

the time that it detaches from its Roche lobe (after evolving off of the RGB). For all curves,

the initial mass of the solar metallicity donor at the onset of mass transfer is 1M�. The final

masses of each of the HeDD’s are labeled adjacent to the corresponding curve. The evolution

is expressed in terms of the thermal bloating factor f where f = R2/Ro. Ro is the radius of

a zero-temperature star (Zapolsky & Salpeter 1969) composed purely of He and having the

same mass as the donor. In the limit of an infinite cooling time, f will approach unity. As

has been noted by many authors (e.g., IT and ND), He-rich dwarfs cool much more slowly

then their CO counterparts. Figure 17 also reveals that higher-mass HeDD’s cool faster than

the low-mass ones. For example, after 5 Gyr, the 0.332M� HeDD has contracted to within

the ∼ 10% of its zero-temperature radius while the 0.216M� model is still bloated by ∼ 35%

(note that differences in the masses of the H-rich envelopes have not been taken into account

but that this would not change the conclusions). As noted previously, low-mass HeDD’s

derive a substantial fraction of their luminosity from nuclear burning in their envelopes.

This is clearly demonstrated in Figure 14 for the 0.209M� HeDD track where we see that its

luminosity is much larger than that for the other models when compared at specific (late)

ages.

3.2.1. Shell Flash versus Thermal Pulse

Detailed analyses of the evolution of two different outcomes of a thermal instability

(a vigorous hydrogen flash and a mild thermal pulse) are shown in Figures 18 and 19,

respectively. In both figures panel a) shows the evolution of the HeDD in the HR diagram

and panel b) depicts the temporal evolution of its temperature profile. As can be seen in

Figure 18 a), the intermediate metallicity donor (Z = 0.004) with an initial mass of 1.5M�
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and core mass of 0.10M� experiences a shell flash but does not overflow its Roche lobe.

Various critical junctures in the evolution are denoted by numbered dots in panel a). The

elapsed time (and other properties) between each of these points is also listed in Table 3a.

The evolution of the internal temperature of the donor for each of the corresponding points

in panel a) is shown in Figure 18 b). The temperatures are plotted with respect to the stellar

mass fraction log(1 − Mr/M) where Mr is the mass residing inside of a shell radius r. At

point 1, corresponding to a value of log Tc = 7.63, Te has reached its maximum value. The

interior is reasonably isothermal up to a mass fraction of ∼ 99%. As the donor cools, the

outer layers cool quickly (compare points 1, 2 and 3) while the interior remains at more or

less constant temperature (the elapsed time between points 1 and 3 is much shorter than

the cooling timescale of the interior). However at point 3, the temperature near the base

of the envelope reaches a minimum value and (partial) adiabatic heating occurs. Between

points 3 and 4 the luminosity of the donor increases and so does the temperature near the

base of its envelope. A very clear temperature inversion takes place and is accelerated by the

energy generation produced by pp-burning. At point 5 the inversion is extremely pronounced

and the maximum temperature in the shell is nearly 4 × 107K. At this point CNO burning

completely dominates energy production and leads to a very significant further increase in

the temperature of the shell (∼ 5×107K). We also start to see the effects of this temperature

inversion since heat is flowing both towards the interior and towards the surface. The increase

in nuclear burning leads to a very substantial increase in the surface luminosity (more than

two orders of magnitude). The onset of CNO burning creates such a large flux of energy

flowing outwards that the layers immediately above the burning shell are unstable against

convection and a convective front moves out towards the surface. This causes hydrogen rich

material to be mixed into the burning zone. After a further thermal readjustment (recession

of the convective zone), Te decreases and the envelope expands until the HeDD reaches its

maximum radius (point 7). Burning at the base of the envelope is still vigorous and the

amount of available fuel decreases. Heat continues to flow inwards and even at point 8 we

see a very significant increase in the temperature in the outer 2% of the mass of the He-rich

core. It is also interesting to note that just before the donor reaches point 8, it experiences

two more thermal pulses. The HeDD then begins another descent down the cooling branch

which is interrupted by a further weak thermal pulse (point 9). After the formation (and

recession) of a small convective zone near the base of the envelope (point10), the HeDD

continuously cools and becomes increasingly electron degenerate.

Figure 19 depicts the evolution of a 1.5M� donor with Z = 0.004 and an initial core

mass of mc,o = 0.25M� (see Table 3b for the corresponding numerical data). This model

experiences a mild thermal instability but not a hydrogen shell flash. At point 1 the donor

evolves horizontally in the HR diagram and we see a very steep temperature gradient in the
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outer 1% of its mass. The interior is approximately isothermal and significantly electron

degenerate. As the donor evolves we see that the temperature in the outer layers drops and

the temperature gradient is less steep. This latter result can be explained by the fact that

energy transport in the outer layers is being dominated by radiation. This trend continues

and at point 5 we start to see a significant drop in the temperature in the outer 10% of the

mass of the HeDD. Between points 7 and 8 sufficient time has elapsed for the value of Tc

to drop by ∼ 20%. However, due to continued collapse of the envelope, the outer 0.3% of

the donor undergoes a slight thermal readjustment (but it does not lead to a temperature

inversion since the temperatures are too low to ignite significant nuclear burning). At point

10 the donor is descending the cooling branch and the value of log L/L� has decreased to

∼ −1.7. Whether or not a donor will experience a shell flash depends sensitively on its

thermal (and nuclear) history and on assumptions pertaining to the input physics. We’re

presently investigating these issues (e.g., diffusion) in much more detail.

3.3. Envelope Masses

As mentioned in §3.1, the mass of the envelope (defined to be equal to the mass of those

layers above the He-rich core containing any non-zero amount of H) continues to decrease due

to nuclear burning after the donor detaches from its Roche lobe. By comparing the values

of menv in Tables 1 & 2 it is clear that the mass of the envelope can decrease substantially.

The actual decrease can depend sensitively on whether or not a flash occurs and whether

there is subsequent loss of envelope mass because of Roche lobe overflow.

The mass and composition of the envelopes play a paramount role in dictating the

cooling timescales of HeDD’s; this in turn affects our estimation of the ages of pulsars in

LMBP’s. This approach of inferring pulsar ages constitutes a very important and completely

independent method when compared to the method used to derive their characteristic ages

based on the measured spin-down derivatives (see §4 for a discussion). Our evolutionary

calculations show that there is a reasonably well-defined dependence of menv (determined at

log(L/L�) = −2) on the metallicity and the mass of the remnant itself. We also find that

the envelope mass is only weakly dependent on the initial donor mass. These claims are

validated by Figure 20. The figure shows the dependence of menv on the mass of the HeDD

for the three adopted values of the metallicity. The symbols correspond to different initial

donor masses (1.0, 1.5, and 2.0 M�). For a fixed value of Z, the results show that menv is

negatively correlated with the mass of the remnant (a result noted by DSBH).

Based on these results we were able to obtain an extremely reliable fit for the mass of
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the envelope:

menv = 3.0 × 10−5 Z−0.21

(

mf

M�

)−2.8

M� (5)

with a coefficient of determination of R2 = 0.96. We caution that the fit given by Equation

(5) should not be extrapolated to values of mf lower than the bifurcation limits for each

respective metallicity6. Our computation of menv yields values (for Z = 0.02) that fit in

middle of the range reported (or adopted) in other papers. The reasons for the discrepancies

arising in the different values of menv can be traced to the sensitivity of the values on the

input physics (e.g., nuclear cross-sections, screening factors, etc.), the method of solution

(e.g., choice of the fitting point between the interior and the envelope), and assumptions

concerning the prior evolution of the binary. The effects of shell flashes on reducing menv

more than that expected from the formula can be seen in Figure 20. Note that for Z = 0.02

we can see the effect very clearly for masses in the range of ∼ 0.21 to 0.28M�.

Finally we plan to examine the dependence of menv and the cooling times on factors such

as the treatment of convection, diffusion, and investigate other modes of angular momentum

dissipation. We have investigated the effects of adopting the assumption of fully conservative

mass transfer and we conclude that Equation (5) still yields a very good fit to the models.

Obviously the same starting conditions can sometimes lead to very different evolutionary

behaviors. For example, the M2,o = 1.5M�, Xc,o = 0.0, Z = 0.02 case leads to three flash

cycles for conservative transfer whereas completely non-conservative mass transfer does not

produce a HeDD that undergoes thermonuclear runaways.

One of the key factors in determining envelope masses and post-RGB evolutionary

behavior is the mass of the HeDD at the turn-off from the RGB. This mass is determined

largely by the value of M2,o, the degree of evolution of the donor at the onset of mass

transfer, and the mode of angular momentum dissipation. One other factor that affects the

evolution is stellar winds. Unfortunately the uncertainties in the mass-loss rate due to winds

is substantial and depends on the exact phase of evolution (Willson 2002). To investigate a

reasonable range of possible wind losses, we used a parameterized version of Reimers’ formula

(1975) for which

ṁwind = 4.0 × 10−13 η

(

L2

L�

) (

R2

R�

) (

M2

M�

)−1

M� yr−1 , (6)

where η is parameter that was adjusted to have values between zero (no wind) and 10. We

find that winds seem to have very little effect on the value of the envelope masses (as given

6We have calculated additional models near the bifurcation limit and found that the limit is . 0.15M�

for Z = 0.02 and . 0.21M� for Z = 0.0001.
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by Equation (5)) but do reduce the value of the final mass of the HeDD (i.e., mf) for a

given set of initial conditions at the onset of mass transfer. For example, the case for which

M2,o = 1.0M�, Xc,o = 0.20, and Z = 0.02, we find that η = 1 yields a 0.30M� HeDD

(that does not flash) while η = 10 yields a 0.26M� HeDD (that does flash). Although this

difference in behaviors does effect the value of menv, we have seen that the effect is not

substantial. We find that winds do on average reduce envelope masses but typically only

by . 15% for η = 10. This is largely due to the fact that wind losses are small during the

contraction phase. The time that the HeDD spends as a relatively high luminosity (and

large radius) object is very short (see Figures 1 - 6) and thus, although ṁwind is relatively

high during this phase, the integrated mass loss is still small. The detailed results of this

study will be reported elsewhere (Nelson & Dubeau 2004b).

3.4. Porb,f −mf Dependence

The most striking feature of the evolution of our grid of systems is the bifurcation

between evolutionary sequences. The bifurcation limit is very sensitive to the input physics,

especially the mode of angular momentum dissipation that the binary experiences (see Ergma

et al. 1998). As long as donors have a chance to form well-developed cores (i.e., they are

well above the bifurcation limit), then there is a good correlation between Porb and the value

of mf of the HeDD (see Rappaport et al. 1995, and references therein; ST). This correlation

is primarily due to the fact that the radius of the donor as it leaves the RGB (and mass

transfer ceases) is largely dictated by the value of mc. Thus the Roche lobe radius (and

hence the orbital period) at turnoff is largely dependent on mc.

The derivation can be described as follows: Since M2 << Mtot for giant donors that are

just about to collapse as they turn off the RGB, we can approximate their (volume-averaged)

Roche lobe radius by the following formula (Paczyński 1971):

RL =
2

34/3

(

M2

M2 + M1

)1/3

A . (7)

If we combine this equation for the Roche lobe, which we take to equal the radius of the

giant donor, R2, with the expression for Kepler’s Third Law, we find the following well-known

relation between the orbital period, Porb, the donor mass, and the Roche-lobe radius:

Porb =
9π√
2G

R
3/2
L M

−1/2
2 . (8)

Because the envelope mass is much smaller than mc and because the decrease in menv as the

remnant cools (and possibly experiences shell flashes) will not change mc substantially, we
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can set M2 ' mc ' mf . Furthermore, RL,f ' R2,f (mc) and thus we can see from Equation

(8) that Porb can be expressed largely in terms of mc (or equivalently mf).

The relationship between Porb,f and mf is shown in Figure 21 for all three metallicities.

As is evident from the figure, there is a strong correlation between Porb,f and mf for each

of the metallicities. This relationship has been extensively analyzed by Rappaport et al.

(1995); they chose to take an average over all metallicities (and mixing-length ratios) to

obtain their final Porb −mf relation. However, as noted by Ergma et al. (1998), donors that

do not have well-developed cores at the onset of mass transfer will not obey a (universal)

Porb − mf relationship. We see this effect in our results (for the lowest values of mc) for

systems that are near the bifurcation limit. For donors that do develop substantial cores

(& 0.25M�) there is a strong correlation between Porb,f and mf (see also TS who investigated

two metallicities). Our results explicitly allow us to include the effects of metallicity in the

Porb,f (mf) relationship. We find that a good fit is obtained for

Porb,f = 2.5 Z0.3 1010.7(mf/M�) hr , (9)

with a coefficient of determination of R2 = 0.94. This formula compares favorably with

the results obtained by Rappaport et al. (1995). Using their best fit to the theoretical

results, we find almost perfect agreement at the high-mass end (∼ 0.45M�) but we find

that our Porb’s are almost one-third lower for masses of ' 0.25M�. At even lower masses

(i.e., those below which Equation [7] cannot be used), the discrepancy can exceed a factor

of two. However, because of the very strong dependence of Porb on mc, this is equivalent

to stating that their inferred values of mf are only about 15% lower for values of Porb ' 2

days (i.e., ∼ 0.03M� lower). Our results agree much more closely with those found by TS

(they allowed for partial mass accretion by the NS and considered tidal coupling). According

to Equation (9), the metallicity dependence can lead to deviations in the inference of the

Porb’s by as much as a factor of 5 (for extreme population differences). Since it is difficult

to accurately evaluate the metallicity of any donor, this equation underscores the fact that

inferences of mf based on the measured Porb’s must be treated with caution. We also find

a reasonably good correlation between Porb,f and Porb,o for donors that have well-developed

cores (i.e., well above the bifurcation limit). These results are shown in Figure 22. We

see that for systems evolving near the bifurcation limit (i.e., small values of mc), the final

values of Porb can be much smaller than would be expected from a simple extrapolation

of the Porb,f (mf) relationship. Finally we note that this formula is only applicable to fully

non-conservative mass transfer and should be used for masses in the range of ∼ 0.25−0.4M�

(i.e., 10 . Porb,f (days) . 500 for solar metallicities, and 4 . Porb,f (days) . 100 for extremely

metal-poor donors).
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4. Application to Selected Observations

Binary millisecond pulsars provide us with some of the best observational data with

which we can test the theoretical predictions of the properties of HeDD’s. Many HeDD’s

(and HeCO DD’s) have been discovered in the past decade and several are found in these

“recycled” pulsar systems. The original magnetic field of the neutron stars has decayed to

. 109 G but the accretion of & 0.01M� of matter has spun them up to millisecond rotational

periods (see Bhattacharya & van den Heuvel [1991] for a review). An estimation of the age

of a pulsar can be obtained from the equation

t =
P

(n − 1)Ṗ

[

1 −
(

P0

P

)n−1
]

, (10)

where P is the measured spin period, P0 is the initial period, and Ṗ is the spin time derivative.

The braking index is specified by n (n = 3 for dipolar radiation). If P0 � P , then the

characteristic age can be approximated by τch = P/(2Ṗ ). The cooling times of HeDD’s

provide us with a completely independent approach to inferring the ages of millisecond

pulsars and can be used in conjunction with the pulsar’s measured period and spin-down

rate to constrain important properties such as P0 (see HPb for a complete discussion of these

issues).

Almost 100 recycled pulsars have been discovered to date (see, e.g., Camilo et al. 2000)

and a large fraction of these are found in globular clusters. Galactic LMBP’s have Porb’s of

between ∼ 0.25 days to more than 1000 days (a period gap seems to exist between ∼ 23

and 56 days). A much shorter-period class of BMSP’s also exists for which Porb . 10 hours

and for which the donors are likely to have an extremely low mass of . 0.03M� (see, e.g.,

Rasio et al. 2000 for a discussion). Perhaps some of these companions have undergone

a period of ablation due to exposure to the electromagnetic radiation/relativistic winds

emanating from the newly-born pulsars (Fruchter et al. 1988). Understanding the evolution

of BMSP’s located in globular clusters is complicated by the relatively high probability of

dynamical encounters, in particular exchange interactions, that are likely to occur in the

cluster cores. In what follows, we briefly analyze the theoretical predictions pertaining to

several representative LMBP’s. The evolution of GK Per will also be discussed since it may

be a CV system that is evolving just above the bifurcation limit and may ultimately become

a double-degenerate binary system7.

7To date more than ten double-degenerate binaries consisting of at least one low-mass DD component

(. 0.45M�) have been detected (Maxted et al. 2002). Unfortunately the masses of the components are not

precisely known and many of these systems may have been formed via a completely different evolutionary

channel.
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4.1. PSR J1012+5307

The BMSP J1012+5307 (Porb ' 14.5 hr) has been well studied (Lorimer et al. 1995)

and its companion has been observed photometrically. van Kerkwijk et al. (1996) determine

the effective temperature of the dwarf to be Te = 8550 ± 25K with an inferred log g =

6.75 ± 0.07. A later study by Callanan et al. (1998) allows for a much wider range of

values (Te = 8670 ± 300K and log g = 6.31 ± 0.2). These observations provide us with a

unique opportunity to confront spin-down theory with the observations (see, e.g., HPb for a

discussion). Lorimer et al. (1995) used the spin-period derivative to estimate the pulsar’s age

(and hence the age of the companion) to be ∼ 7 Gyr. HPb, using the envelope masses from

IT, estimate the mass of the HeDD to be between 0.13−0.21M� and its age to be < 0.6 Gyr.

They did not find nuclear burning in the envelope to be important and thus their estimated

cooling age is relatively short. DSBH and SEG showed that the effects of nuclear burning

on the inferred cooling ages of low-mass HeDD’s (in particular) could be substantial. It was

also noted by Ergma & Sarna (1996) that systems near the bifurcation limit that necessarily

produce very low-mass HeDD’s (. 0.2M�) would not have formed from donors that had

well-developed cores and thus the use of a Porb −mf relationship (such as the one derived in

§3.4) would not be appropriate. The grid presented in this paper is too sparsely populated to

infer the cooling age of J1012+5307, so we calculated additional tracks. Interpolating these

results (and assuming a solar metallicity and that Te ' 8600K) we conclude that the best

fit for the companion corresponds to log L/L� = −2.1± 0.2, mf = 0.17− 0.18M�, t = 8− 9

Gyr, and log g = 6.5±0.1. Our models reasonably fit the results derived by van Kerkwijk et

al. (1996) but the ones derived by Callanan et al. (1998) are less constraining. The cooling

age for this donor (which does not undergo a flash and thus does not overflow its Roche lobe)

is in good agreement with the spin-down time inferred from the pulsar measurements. The

importance of nuclear burning in these low-mass donors is clearly demonstrated and is the

primary reason for the discrepancy between our results and those of HPb. Finally we note

that if there were no H-rich envelope, the models of Nelson and Davis (2000) would imply

that for mf = 0.18M�, the cooling age would be much shorter (∼ 0.5 Gyr).

4.2. PSR B1855+09

This system is composed of a 5.4 ms radio pulsar and a low-mass companion (inferred

from the measured mass function) in a 295-hour circular orbit (Segelstein et al. 1986). This

BMSP is rather unique in that the mass of the companion has been measured quite precisely

using the Shapiro delay of the pulsar signal (Kaspi et al. 1994). The mass is found to be

∼ 0.258 ± 0.02M� and the characteristic age of the pulsar is thought to be ∼ 5 Gyr. The
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companion has been detected and its effective temperature is inferred to be 4800 ± 800K

(see van Kerkwijk et al. [2000], and references therein). This system is very important

as an observational test of our understanding of the formation and evolution of HeDD’s.

The most stringent test concerns the relation between Porb and mf . In essence it allows us

to test the accuracy of our computed relationship between the radius of the (RG) donor

and its core mass at the point of detachment (assuming that the effects of shell flashes are

properly evaluated). Based on our models and using the observed value of Porb, we find that

mf ' 0.25M� for a solar metallicity. If we reduce the metallicity slightly (Z = 0.015), we

can obtain almost perfect agreement with the best estimate of mf . The second test concerns

the cooling time of the donor in comparison with the pulsar’s characteristic age. Given the

relatively thick envelopes expected for this mass and the importance of nuclear burning,

most recent models imply a cooling time of & 10 Gyr. While this is not in unreasonable

agreement with the characteristic age, it does seem to imply that the envelope is too thick.

The recent work of ASB who employed diffusion seems to resolve this issue. They conclude

that the HeDD can cool to the observed within 4 Gyr. We did not evolve our models to such

low temperatures, but an extrapolation reveals a cooling time of & 10 Gyr. If the H-rich

envelope were removed, the models of Nelson and Davis (2000) would imply that the cooling

age could be much shorter (∼ 3 Gyr). If we adopted an extremely low metallicity, it might

also be possible to obtain a cooling time of 5 Gyr.

4.3. PSR J0437-4715

Another extremely important system is the LMBP J0437-4715 which has a nearly

circular orbit and a Porb = 137.8 hr (Johnston et al. 1993). It is also the closest LMBP at a

distance of about 140 pc. Like PSR 1855+09, the Shapiro delay was used to determine both

the mass of the HeDD (0.236 ± 0.017M�) and of the pulsar (1.58 ± 0.18M�; van Straten

et al. [2001]). They also infer an inclination angle of i = 42.75◦ which is consistent with

the upper limit of 43◦ found by Sandhu et al. (1997). Based on our computations and

assuming a solar metallicity, an extremely good fit to the observations can be obtained for

M2 ' 0.23±0.01M� . The characteristic age of the pulsar based on a precise measurement of

the spin-period derivative yields an age of ∼ 4.9 Gyr. Assuming an age of 5 Gyr, our cooling

curves imply that Te ≈ 8500K and log L/L� ≈ −2.5. However, based on the observations of

Bell et al. (1995) it appears that the effective temperature is only ∼ 4000K. The models of

ASB (solar metallicity) seem to reconcile the spin-down time with the cooling time.
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4.4. Ultracompact Systems

There are a number of LMXB’s and recently discovered accreting millisecond (binary)

pulsars that have ultrashort orbital periods (. 60 minutes). The former group includes:

4U 1915-05 (50.0 min), 4U 1626-67 (41.4 min), 1850-0846 (20.5 min), and 4U 1820-30 (11.4

min); and the latter group consists of XTE J0929-314 (43.6 min), XTE J1751-305 (42.4

min), and XTE J1807-294 (. 40 min). There are also several ultracompact CV’s including

V485 Cen (59.0 min), GP Com (46.5 min), CP Eri (28.7 min), V803 Cen (26.9 min), HP

Lib (18.6 min), CR Boo (24.5 min), AM CVn (17.1 min), and ES Cet (10.3 min) (see, e.g.,

PRP and references therein). There are number of evolutionary pathways that could lead

to the formation of these ultrashort-period systems, but it is clear that the donors must

be moderately to severely hydrogen depleted (see, e.g., NRJ). As shown by a number of

authors, including Tutukov et al. (1985), Pylyser & Savonije (1988, 1989), and NR, these

systems can be formed by systems wherein the donor is close to TAMS at the onset of mass

transfer (i.e., above the bifurcation limit). PRP and NR showed that LMXB’s with periods

as short as ∼ 8 minutes could be produced. Our smallest values of Porb (corresponding to

systems just below the bifurcation limit) can be a short as ∼ 20 minutes (M2 ∼ 0.1M�).

We caution however that pressure ionization and Coulombic coupling can be very important

in these low-mass models and for that reason we halted our evolutionary sequences when

M2 . 0.1M�. There is a strong correlation between the metallicity and the minimum value

of Porb. Metal-poor donors are considerably smaller than their solar metallicity counterparts

and thus their Porb’s are smaller (see Equation [8]).

4.5. GK Per

GK Per is a CV with a Porb of 47.9 hr (Crampton et al. 1983). The optical companion

is classified as a spectral type K2 IV (Warner 1976) and the compact accretor is a white

dwarf. Based on the analysis of the X-ray pulse period and on evolutionary calculations of

subgiants, Watson et al. (1985) estimated M1 ≥ 0.72M� and that M2 ≈ 0.25M�. Using this

as a starting point (and taking Z = 0.02), we find that only sequences (for M1 = 0.7M�)

that evolve just above the bifurcation limit can reproduce the observations. The ‘best fit’

is obtained for a 1M� donor whose initial core mass is ∼ 0.1M�. By the time that M2 is

reduced to 0.245M�, log L2/L� ≈ −0.1 and Te ≈ 4600K. These results are in good agreement

with the luminosity class assignment and spectral type. We also find that the donor is likely

to have a hydrogen surface abundance of Xs ∼ 0.6 and that its He-core mass is ∼ 0.13M�.

Unfortunately, the value of the surface abundance of hydrogen is not sufficiently different

from the primordial abundance that it could be used to test the theoretical predictions.
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5. Summary

We have systematically analyzed the evolution of a grid of interacting binary systems

that ultimately lead to the formation of He-rich DD’s in either a detached or semi-detached

state. Although parameter space is five dimensional (M2,o, m1,o, Z, Xc,o/mc,o, J̇), we have

explored an important slice of it. The initial conditions were chosen so as to cover a wide

range of realistic physical parameters and special attention was paid to maximizing the

computational accuracy. Unlike previous investigations, we analyze the formation and prop-

erties of isolated (detached) HeDD’s for masses up to the helium flash (∼ 0.46M�) and for

all realistic metallicities (0.0001 ≤ Z ≤ 0.02).

As noted in several previous papers, there is a an extremely sharp bifurcation between

donors that evolve to become giants whose cores subsequently cool as HeDD’s, and those

that continue to lose mass until they are reduced to planetary-mass sized objects. This

bifurcation is very dependent on the assumed initial conditions and the input physics. We

are currently investigating other portions of parameter space and also calculating a finer

grid of models. All this is part of the MULTIGRID project (Nelson & Dubeau 2004a). The

models calculated for this paper constitute part of an archive that is available for retrieval;

a Web-server is also available so that specific tracks can be calculated on demand.

Several very interesting results have come out of this study (some of which confirm

published claims and others which are complementary to previous work). The main findings

can be summarized as follows:

1) The determination of the cooling times of HeDD’s gives us a completely independent

method of determining the ages of millisecond pulsars in LMBP’s. As shown by HPb, the

cooling age can in principle be used in conjunction with the measured pulsar spin-down times

to constrain the initial spin periods of individual pulsars and possibly be used to comment on

their magnetic-field decay times. This can only be accomplished if accurate inferences can be

made as to the age of the HeDD companion based on its cooling evolution. Unfortunately

this latter determination is problematic due to a number of uncertainties: (i) there is no

precise consensus as to the envelope mass and composition of HeDD’s; (ii) the importance

of ablative or other phenomena that leads to a reduction in the envelope mass has not been

rigorously investigated; and, (iii) the metallicity of the primordial binary needs to be well

established. If the donor loses a significant fraction of its envelope (e.g., & 50%) during the

contraction/cooling phase, this loss can greatly affect the predicted cooling times.

2) We find that nuclear burning is important in retarding the cooling process, especially

for low-mass HeDD’s (as noted by DSBH and SEG). Accounting for this burning corrects

the discrepancy between the spin-down time and the cooling time of LMBP’s such as PSR
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J1012+53. However, there are other systems (e.g. PSR 1855) and some double (helium)

degenerates (Yungelson et al. 2002) for which the cooling needs to occur on a shorter

timescale in order to explain the observations. This can be accomplished if menv is smaller

than the values quoted in this paper, but is possible that the value of menv decreases due

to effects other than nuclear burning after the donor has detached from its Roche lobe. We

are currently examining the effects of ablation on the envelope structure and cooling times.

We know, for instance, that if the envelope is completely removed (yielding pure helium

HeDD’s) then the cooling times would be much shorter (see, e.g., Nelson and Davis 2000).

Alternatively, ASB have shown that the diffusion of hydrogen is a very good candidate to

reconcile pulsar spin-down times and the inferred cooling ages.

3) If the cores are well-developed (mc & 0.10M�) at the onset of mass transfer, then the

value of the final orbital period of a BMSP can be reasonably accurately predicted based

on the final mass of the HeDD and its metallicity. Since Porb,f ∝ Z0.3, this implies that for

a given HeDD mass, the value of Porb for systems in globular clusters should be a factor of

2-5 times smaller than for systems in the galactic plane (assuming that the systems form

and evolve in a similar manner). This is a very significant difference but it is difficult to

verify because: (i) the mass of the HeDD needs to be determined very precisely due to the

very strong dependence of Porb,f on mf ; and, (ii) the relatively high probability of exchange

interactions/captures for those metal-poor systems residing in the cores of globular clusters.

Based on the available observational data, we can only conclude that there is no statistical

inconsistency.

4) We confirm that all HeDD’s experience some form of thermal pulse and that vigorous

shell flashes only occur for a finite range of masses (e.g., similar to the results found by

DSBH for solar metallicities), and we show that this range is strongly correlated with the

metallicity of the donor. Furthermore shell flashes can alter cooling times on both the short-

and long-terms (and also lead to renewed episodes of mass accretion by the NS). On the

short term they can delay cooling (we assume that the ”zero-point” in age is taken to be the

point where the donor turns off the RGB and mass-loss ceases), and in the long term the

reduction of the envelope’s H-rich mass can lead to increased cooling. The first effect could

potentially be quite important when trying reconcile the characteristic (spin-down) ages of

very young pulsars.

5) We find that for certain ranges of initial conditions (see, e.g., Figure 11) that mass transfer

can temporarily cease if there is a substantial gradient (or discontinuity) in the hydrogen

abundance profile in the envelope of the donor as it ascends the RGB. This is true for all

metallicities but occurs for a wider range of initial conditions in higher metallicity systems.

The donor initially shrinks within its critical Roche lobe and then expands until RLOF
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resumes. At the point where mass transfer just stops, the neutron star would have already

accreted sufficient matter and would ‘turn on’ as a recycled pulsar. The pulsar could then be

detected at radio wavelengths and we predict that the measured mass function would likely

be relatively large compared to what would be expected for LMBP’s that are old and thus

in the cooling phase. Adopting Z = 0.02, we find that the mass of the donor during this

phase could be in the range of 0.2 . (M2/M�) . 0.8. The interesting question is whether

the pulsar would have any effect (e.g., ablation) on the evolution of the donor and thus on

the binary system itself. If ablation or the radio ejection of matter (see Burderi, D’Antona &

Burgay 2002) were important and prevented the donor from re-filling its Roche lobe or caused

a significant amount of mass loss from the donor, then the formation of BMSP’s containing

intermediate-mass HeDD’s (0.25 . mf/M� . 0.3) would be inhibited. If this scenario is

correct, then ‘gap’ in the distribution of Porb’s coincident with the observed gap of between

∼ 20 to 60 days can be reproduced (Nelson 2004a). Moreover, if the pulsar can effectively

stymie further mass accretion by ejecting mass from the binary system, then we would expect

these systems to be reasonably long-lived BMSP’s for which the donor fills a large fraction of

its Roche lobe. This may lead to eclipsing phenomena such as that observed in J1740-5340

(D’Amico et al. 2001) [it should be noted that this pulsar is located in NGC6397 which

is an extremely metal-poor globular cluster and the binary system has probably undergone

an exchange interaction/tidal capture given its distance from the cluster’s core (see Nelson

2004b for a discussion of this effect on the evolution of J1740-5340)]. Such systems would

have a reasonably high probability of detection and confirmation of their existence would

be enormously beneficial to our theoretical understanding of the evolution of interacting

binaries containing pulsars.

Developing a self-consistent picture that explains the relative numbers of LMXB’s and

LMBP’s and their orbital period distribution is absolutely essential if we are to understand

the formation and evolution of low-mass, interacting binaries containing compact objects.

We plan to use our computed results (with finer resolution for systems near the bifurcation

limit) to carry out binary population syntheses (BPS’s) to better understand issues such as

the apparent gap in the orbital period distribution of BMSP’s. Another important issue that

will be addressed by a BPS study concerns the relatively large number of BMSP’s whose

donors apparently had initial properties placing them close to the bifurcation limit. If the

explanation is that the progenitor binaries were formed with initial conditions close to this

limit (after the formation of the neutron star), then we would expect an equivalently large

number of systems just below the limit (i.e., the ones that can evolve to ultrashort periods

because their donors are helium rich). This may account for the ultracompact accreting

millisecond pulsars that have been recently discovered. Our preliminary analysis suggests

that these two types of systems are closely related to each other.
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Note Added in Manuscript: In a much earlier version of this paper (2001) we had not fully

taken into account the effects of superadiabaticity in the outer layers of the interior (i.e.,

just below the fitting mass that delineates the interior from the envelope). Although this

problem did not affect our low-luminosity donors, it had a noticeable effect on the evolution

of higher core-mass cases. We recalculated the grid thereby addressing this issue completely.
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Fig. 1.— Evolutionary tracks of donors in interacting binaries plotted on the HR diagram.

For each track, the initial mass of the donor is 1.0M�, its metallicity is Z = 0.02, and the

mass of the compact companion is 1.4M�. The numbers adjacent to each track denote the

initial core masses (mc,0). For those systems that have not formed a core, the initial central

H-abundance (Xc,0) is labeled. [In the electronic edition: The symbols Xc and Mc denote

the values of the central hydrogen content and the helium core mass (in solar masses) of

the donor at the onset of mass transfer, respectively.] Note that Mc = 0.00 is equivalent to

Xc = 0. Donors that experience vigorous hydrogen shell flashes have their tracks interrupted

by dotted lines. The endpoints of the dotted lines denote the location of the beginning and

ending of the shell flashes. The actual shell-flash evolution is omitted for reasons of clarity

and is investigated in more detail (see Figures 12 & 19). The age of the donor after its

detachment from the Roche lobe (near the RGB) is denoted by squares (107 yr), triangles

(108 yr), and dots (109 yr).
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Fig. 2.— Evolutionary tracks of an initially 1.0M� donor with a metallicity of Z = 0.004

plotted on the HR diagram. The mass of the compact companion is 1.4M�. The labeling

follows the same format as described in Figure 1.
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Fig. 3.— Evolutionary tracks of an initially 1.0M� donor with a metallicity of Z = 0.0001

plotted on the HR diagram. The mass of the compact companion is 1.4M�. The labeling

follows the same format as described in Figure 1.



– 41 –

Log Teff ( K )
3.63.84.04.24.44.64.85 .05 .2

Lo
g (

L/L
�
)

- 2

- 1

0

1

2

3

4

Mc  =   0.05
Mc  =   0.10
Mc  =   0.15
Mc  =   0.20
Mc  =   0.25

Mc  =   0.00

Xc  =   0.30
Xc  =   0.10

Fig. 4.— Evolutionary tracks of an initially 1.5M� donor with a metallicity of Z = 0.02

plotted on the HR diagram. The mass of the compact companion is 1.4M�. The labeling

follows the same format as described in Figure 1.
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Fig. 5.— Evolutionary tracks of an initially 1.5M� donor with a metallicity of Z = 0.004

plotted on the HR diagram. The mass of the compact companion is 1.4M�. The labeling

follows the same format as described in Figure 1.
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Fig. 6.— Evolutionary tracks of an initially 1.5M� donor with a metallicity of Z = 0.0001

plotted on the HR diagram. The mass of the compact companion is 1.4M�. The labeling

follows the same format as described in Figure 1.
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Fig. 7.— Evolution of a 1.0M� donor losing mass to a 1.4M� accretor in the HR diagram.

Two separate cases are considered, one for which the original value of mc = 0 (gray curves)

and the other corresponding to initial core masses of 0.20M� (black curves). The solid,

dashed, and dotted curves correspond to metallicities of Z = 0.0001, 0.004, and 0.02, respec-

tively. [In the electronic edition: Two separate cases are considered, one for which the original

value of mc = 0 (dashed lines) and the other corresponding to initial core masses of 0.20M�

(solid lines). The red, blue, and black curves correspond to metallicities of Z = 0.0001,

0.004, and 0.02, respectively.]
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Fig. 8.— Orbital period evolution plotted versus M2/M� for an initial donor mass of 1.5M�,

with a metallicity of Z = 0.02. For all tracks the mass of the accretor is 1.4M�. The

symbols Xc and Mc denote the values of the central hydrogen content and the helium core

mass (in solar masses) of the donor at the onset of mass transfer, respectively. A very sharp

bifurcation is seen for initial values of Porb of . 20 hours.
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Fig. 9.— Orbital period evolution plotted versus M2/M� for an initial donor mass of 1.5M�

with a metallicity of Z = 0.0001. For all tracks the mass of the accretor is 1.4M�. The

symbols Xc and Mc denote the values of the central hydrogen content and the helium core

mass (in solar masses) of the donor at the onset of mass transfer, respectively. A very sharp

bifurcation is seen for initial Porb’s of . 8 hours.



– 47 –

Log Teff ( K )
3.63.84 .04 .24 .44 .64 .85 .0

Lo
g (

L/L
�
)

- 2

- 1

0

1

2

3

M  /  M �

0.00.20.40.60.81.0

P o
rb
 (h

r)

10

100

1000

10000

C o n s e r v a t i v e
N o n - C o n s e r v a t i v e

C o n s e r v a t i v e
N o n - C o n s e r v a t i v e

a)

b )

Fig. 10.— Evolution of binaries containing donors with an initial mass of 1.0M� and having

a solar metallicity (Z = 0.02). The initial core mass of each donor is 0.25M� and it is

transferring mass to a 1.4M� accretor. Its evolution in the HR diagram is shown in panel

a). The solid curve corresponds to the non-conservative case (β = 0) and the dashed curve

corresponds to the conservative case (β = 1). Note that the donor experiences one shell flash

cycle (see §3.2 for more details on this phase of evolution). In panel b) the corresponding

evolution of the orbital periods is plotted versus M2/M� for both the conservative and non-

conservative cases.
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Fig. 11.— Evolution of the log of the secular (averaged) mass-transfer rate from the donor

to the accretor (in units of M� yr−1) as a function of the mass of the donor (in solar units).

For all tracks the initial mass of the donor is 1.0M�, its metallicity is Z = 0.02, and the

mass of the accretor is 1.4M�. The symbols Xc and Mc denote the values of the central

hydrogen content and the helium core mass (in solar masses) of the donor at the onset of mass

transfer, respectively. Some tracks exhibit temporary mass cessations as they are ascending

the RGB (these can be seen as sharp downward spikes). For cases that ultimately produced

HeDD’s, the endpoints of those tracks correspond to the point where mass transfer ceases

permanently. For the other cases, the endpoints simply reflect the value of M2 at which the

computation was halted.
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Fig. 12.— Evolution of a donor with an initial mass of 1.0M� and a solar metallicity

(Z = 0.02) that undergoes a shell flash. The initial core mass of the donor is 0.15M� and it

is losing mass to a 1.4M� accretor. Important junctures during the shell flash are indicated

by numbers labeled from 1 to 6. The first major thermal pulse occurs at point 3. When the

donor refills its Roche lobe at point 4, mass transfer recommences. This mass-loss phase of

the evolution occurs until points 5 and is denoted by a dotted line. The amount of mass

that is lost from the donor (∆M) is given in solar units.
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Fig. 13.— Temporal evolution of the luminosity of the donor (L2) as a function of the time

elapsed since the initial detachment of the donor from its Roche lobe near the RGB. For

each curve, the initial mass of the donor is 1.0M� with a metallicity of (Z = 0.02). The final

HeDD masses corresponding to each curve are listed in solar units. Each curve corresponds

to a different initial core mass (mc,o; labeled as Mc) and the accretor is a 1.4M� compact

object. Vigorous shell flashes cause the luminosity of the donor to increase by several orders

of magnitude on a short timescale and thus are seen as vertical spikes in the diagram.
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Fig. 14.— Temporal evolution of the luminosity of the donor (L2) as a function of the time

elapsed since the initial detachment of the donor from its Roche lobe near the RGB. For

each curve, the initial mass of the donor is 1.5M� and its metallicity is (Z = 0.02). The final

HeDD masses corresponding to each curve are listed in solar units. Each curve corresponds

to a different initial value of core mass (at the onset of mass transfer) and the accretor was

a 1.4M� compact object. For some of the tracks, vigorous shell flashes cause the luminosity

of the donor to increase by several orders of magnitude on a short timescale thus producing

almost vertical spikes.
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Fig. 15.— Temporal evolution of the radius of the donor (R2) as a function of the time

elapsed since the initial detachment of the donor from its Roche lobe near the RGB. For

each curve, the initial mass of the donor was 1.0M� and its metallicity was Z = 0.02 (the

accretor is a 1.4M� compact object). The values of the initial core mass (mc in units of

solar masses) are listed in the figure. Vigorous shell flashes cause the radius of the donor to

increase on a short timescale and thus produce the almost vertical spikes seen in the figure.

The zero-temperature radii of the lowest and highest mass models are denoted by dotted

lines (values calculated assuming a pure He composition). [In the electronic edition: The

zero-temperature radii of the lowest and highest mass models are denoted by dashed lines

(values calculated assuming a pure He composition).]
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Fig. 16.— Temporal evolution of the luminosity of the donor (L2) as a function of the time

elapsed since the initial detachment of the donor from its Roche lobe (after leaving the RGB).

For each curve, the initial mass of the donor is 1.0M� and its initial core mass is 0.15M�

and the accretor is a 1.4M� compact object. The values of the metallicity (Z) are listed in

the legend. Vigorous shell flashes cause the luminosity of the donor to increase by several

orders of magnitude on a short timescale (nearly vertical spikes).
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Fig. 17.— Cooling evolution of the donor expressed in terms of the thermal bloating factor

f (≡ R2/Ro). Ro is the zero-temperature radius of a star of identical mass that is composed

only of helium. Each curve is labeled with the final mass of the cooling dwarf. The initial

core masses (mc,0) labelled as Mc (in solar units) are shown in the legend. The initial masses

of the donor (Z = 0.02) and accretor are 1.0 and 1.4 M�, respectively.
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Fig. 18.— Evolution of a donor with an initial mass of 1.5M� and a metallicity of Z = 0.004.

The initial core mass of the donor is 0.10M� and the accretor’s mass is 1.4M�. Its evolution

in the HR diagram is shown in panel a). Important junctures during the shell-flash phase are

indicated by dots that are labeled by numbers from 1 through 10. The first major thermal

pulse occurs at point 3. In panel b) the corresponding evolution of the temperature profile

throughout the interior of the HeDD is shown. The log of T is plotted against the log of the

mass fraction (i.e., log(1−mr/m) where mr is the mass enclosed within a radius equal to r).

The solid black dots in panel b) denote the approximate location of the boundary between

the envelope and the He-rich core.
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Fig. 19.— Evolution of a donor with an initial mass of 1.5M� and a metallicity of Z = 0.004.

The initial core mass of the donor is 0.25M� and it is transferring mass to a 1.4M� accretor.

Its evolution in the HR diagram is shown in panel a). Important junctures during the shell

flash are indicated by dots that are labeled by numbers 1 through 10. In panel b) the

corresponding evolution of the temperature profile of the interior of the HeDD is shown.

The log of T is plotted against the log of the mass fraction (i.e., log(1−mr/m) where mr is

the mass enclosed within a radius equal to r). The solid black dots in panel b) denote the

approximate location of the boundary between the envelope and the He-rich core.
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Fig. 20.— Dependence of the envelope mass (menv) in units of solar masses on the final

mass of the HeDD (determined at log(L/L�) = −2). The initial masses of the donors

(at the onset of mass transfer) are denoted by circles, triangles, and squares as shown in

the legend. The regression lines for the three metallicities are also shown. The various

shades of gray correspond to different metallicities (Z=0.02 is black, Z=0.004 is light gray,

Z=0.0001 is medium gray). [In the electronic edition: The various colors correspond to

different metallicities (Z=0.02 is green, Z=0.004 is blue, Z=0.0001 is red).]
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Fig. 21.— Dependence of the final orbital period (Porb,f in hours) on the final mass of

the HeDD. The initial mass of the donors (at the onset of mass transfer) is denoted by

circles, triangles, and squares as shown in the legend. The regression lines for the three

metallicities are also shown. The various shades of gray correspond to different metallicities

(Z=0.02 is black, Z=0.004 is light gray, Z=0.0001 is medium gray). [In the electronic

edition: The various colors correspond to different metallicities (Z=0.02 is green, Z=0.004

is blue, Z=0.0001 is red).] The regression line fit must be used with caution for high-mass

HeDD’s (& 0.4M�), and low-mass ones (. 0.25M�).
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Fig. 22.— Dependence of the final orbital period (Porb,f in hours) on the initial orbital period

(Porb,o in hours). The initial mass of the donors (at the onset of mass transfer) is denoted by

circles, triangles, and squares as shown in the legend. The various shades of gray correspond

to different metallicities (Z=0.02 is black, Z=0.004 is light gray, Z=0.0001 is medium gray).

[In the electronic edition: The various colors correspond to different metallicities (Z=0.02

is green, Z=0.004 is blue, Z=0.0001 is red).] Although there is a strong linear dependence

between the initial and final orbital periods for Porb,o & 20hr, this relationship breaks down

below this value (corresponding to systems with initial conditions that place them close to

the bifurcation limit).
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Table 1a. Representative Donor Propertiesa (Z = 0.02)

(Mc/Xc)o M2f t(Gyr) logL logTe log Tc log Pc Xc < X > logPorb,o log Porb,f Menv MX=0.1

M1 = 1.4M�, M2o = 1M�

Mc=0.35 0.452 0.006 3.37 3.539 7.57 22.44 0.00 0.68 3.57 4.32 0.0082 0.0081

Mc=0.30 0.373 0.017 2.79 3.532 7.56 22.04 0.00 0.67 2.99 3.96 0.0104 0.0101

Mc=0.25 0.332 0.059 2.36 3.574 7.56 21.80 0.00 0.65 2.44 3.54 0.0096 0.0091

Mc=0.20 0.304 0.196 2.05 3.601 7.50 21.67 0.00 0.63 2.05 3.25 0.0088 0.0082

Mc=0.15 0.270 0.640 1.60 3.647 7.46 21.49 0.00 0.61 1.59 2.79 0.0088 0.0079

Mc=0.10 0.231 1.848 0.94 3.701 7.40 21.22 0.00 0.58 1.28 2.17 0.0119 0.0105

Mc=0.05 0.216 2.748 0.64 3.724 7.38 21.10 0.00 0.56 1.23 1.89 0.0136 0.0119

M1 = 1.4M�, M2o = 1.5M�

Mc=0.30 0.377 <0.001 2.78 3.536 7.66 22.02 0.00 0.67 2.76 3.94 0.0096 0.0092

Mc=0.25 0.349 0.045 2.56 3.569 7.58 21.91 0.00 0.66 2.42 3.69 0.0079 0.0075

Mc=0.20 0.306 0.210 2.08 3.601 7.50 21.69 0.00 0.64 1.87 3.26 0.0082 0.0076

Mc=0.15 0.274 0.600 1.63 3.639 7.47 21.49 0.00 0.62 1.52 2.84 0.0092 0.0083

Mc=0.10 0.267 0.764 1.54 3.647 7.46 21.46 0.00 0.61 1.51 2.75 0.0095 0.0086

Mc=0.05 0.254 1.175 1.35 3.686 7.44 21.39 0.00 0.59 1.45 2.56 0.0087 0.0077

Xc=0.00 0.209 2.752 0.30 3.697 7.34 20.86 0.00 0.57 1.35 1.73 0.0341 0.0316

M1 = 1.4M�, M2o = 2M�

Mc=0.10 0.299 0.172 1.87 3.620 7.62 21.53 0.00 0.61 1.60 3.06 0.0097 0.0088

Mc=0.00 0.285 0.297 1.73 3.633 7.57 21.48 0.00 0.60 1.46 2.92 0.0097 0.0089

Xc=0.10 0.274 0.548 1.58 3.651 7.55 21.41 0.00 0.58 1.46 2.77 0.0100 0.0089

aThe properties of donors that evolve to become HeDD’s at the point where they have just detached from their Roche lobes after

evolving off the RGB.

Note. — The first column lists the values of either the central hydrogen content (Xc) or the helium core mass (Mc in solar masses)

at the onset of mass transfer. M2f is the (final) mass of the donor in units of M�, and t (Gyr) denotes the age of the donor measured

from the onset of mass transfer. logL is the log of the luminosity in solar units, and log Te is the log of the effective temperature in

Kelvin. Note that log Tc and log Pc are the logs of the central temperature (K) and central pressure (ergs/cm2), respectively. Xc is the

central hydrogen abundance and < X > is hydrogen abundance averaged over the envelope of the donor. log(Porb,o) is the log of the

initial orbital period (in hours) and log(Porb,f ) is the log of the final orbital period (in hours). Menv is the mass of the H-rich envelope

in units of M� and MX=0.1 is the mass of the envelope measured from the surface to the point where the hydrogen mass fraction has

decreased to 0.1. Note that ‘na’ is used wherever the results are Not Applicable.
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Table 1b. Representative Donor Propertiesa (Z = 0.004)

(Mc/Xc)o M2f t(Gyr) log L log Te logTc logPc Xc < X > log Porb,o logPorb,f Menv MX=0.1

M1 = 1.4M�, M2o = 1M�

Mc=0.35 0.435 0.007 3.18 3.582 7.66 22.33 0.00 0.67 3.27 4.06 0.0094 0.0092

Mc=0.30 0.378 0.020 2.73 3.614 7.65 22.03 0.00 0.65 2.75 3.67 0.0096 0.0092

Mc=0.25 0.335 0.075 2.32 3.632 7.56 21.81 0.00 0.64 2.24 3.33 0.0114 0.0107

Mc=0.20 0.311 0.200 2.07 3.651 7.51 21.69 0.00 0.63 1.94 3.10 0.0112 0.0104

Mc=0.15 0.291 0.381 1.78 3.681 7.51 21.55 0.00 0.62 1.65 2.82 0.0120 0.0109

Mc=0.10 0.276 0.618 1.56 3.693 7.50 21.44 0.00 0.61 1.49 2.62 0.0140 0.0127

Mc=0.05 0.265 0.870 1.39 3.705 7.49 21.36 0.00 0.63 1.39 2.47 0.0145 0.0138

M1 = 1.4M�, M2o = 1.5M�

Mc=0.35 0.447 0.008 3.24 3.581 7.67 22.38 0.00 0.68 3.11 4.10 0.0096 0.0094

Mc=0.30 0.382 0.001 2.76 3.598 7.66 22.05 0.00 0.66 2.57 3.74 0.0092 0.0088

Mc=0.25 0.374 0.039 2.68 3.617 7.69 21.98 0.00 0.65 2.44 3.62 0.0097 0.0092

Mc=0.20 0.343 0.074 2.36 3.634 7.65 21.80 0.00 0.63 2.06 3.35 0.0108 0.0101

Mc=0.15 0.326 0.117 2.19 3.663 7.65 21.70 0.00 0.61 1.84 3.17 0.0098 0.0089

Mc=0.10 0.309 0.159 1.95 3.668 7.63 21.56 0.00 0.59 1.58 2.97 0.0131 0.0120

Mc=0.05 0.297 0.235 1.80 3.673 7.60 21.48 0.00 0.58 1.43 2.85 0.0157 0.0143

Xc=0.00 0.270 0.595 1.50 3.715 7.52 21.14 0.00 0.50 1.27 2.51 0.0346 0.0318

M1 = 1.4M�, M2o = 2M�

Mc=0.10 0.292 0.056 1.90 3.673 7.71 21.20 0.00 0.37 1.40 2.92 0.0183 0.0212

Mc=0.00 0.279 0.117 1.78 3.672 7.63 20.89 0.00 0.40 1.29 2.85 0.0475 0.0425

Xc=0.10 0.272 0.340 1.72 3.681 7.60 21.16 0.00 0.38 1.29 2.79 0.0201 0.0170

Xc=0.30 0.214 2.743 0.73 3.819 7.43 20.45 0.00 0.22 1.17 1.68 0.0542 0.0444

aThe properties of donors that evolve to become HeDD’s at the point where they have just detached from their Roche lobes after

evolving off the RGB.

Note. — See the Note beneath Table 1a for an explanation of all of the columns and symbols used in this table.
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Table 1c. Representative Donor Propertiesa (Z = 0.0001)

(Mc/Xc)o M2f t(Gyr) log L log Te logTc logPc Xc < X > log Porb,o logPorb,f Menv MX=0.1

M1 = 1.4M�, M2o = 1M�

Mc=0.35 0.445 0.013 2.98 3.670 7.66 22.36 0.00 0.65 2.88 3.65 0.0115 0.0109

Mc=0.30 0.395 0.038 2.57 3.684 7.65 22.09 0.00 0.64 2.43 3.33 0.0148 0.0139

Mc=0.25 0.357 0.129 2.21 3.703 7.57 21.89 0.00 0.63 2.02 3.02 0.0175 0.0162

Mc=0.20 0.349 0.168 2.08 3.706 7.60 21.81 0.00 0.63 1.90 2.92 0.0201 0.0186

Mc=0.15 0.330 0.250 1.95 3.716 7.60 21.63 0.00 0.54 1.73 2.81 0.0260 0.0237

Mc=0.10 0.307 0.354 1.65 3.739 7.58 21.41 0.00 0.50 1.38 2.53 0.0339 0.0307

Mc=0.05 0.297 0.467 1.49 3.747 7.57 21.29 0.00 0.48 1.22 2.39 0.0404 0.0362

Xc=0.00 0.272 1.170 1.09 3.776 7.52 20.98 0.00 0.41 1.05 2.02 0.0563 0.0493

M1 = 0.7M�, M2o = 1M�

Xc=0.00 0.226 1.880 0.30 3.834 7.43 20.26 0.00 0.27 1.05 1.28 0.0961 0.0722

M1 = 1.4M�, M2o = 1.5M�

Mc=0.35 0.459 0.014 3.06 3.666 7.67 22.42 0.00 0.66 2.75 3.71 0.0118 0.0113

Mc=0.30 0.405 0.041 2.67 3.681 7.66 22.15 0.00 0.64 2.31 3.41 0.0126 0.0118

Mc=0.25 0.394 0.058 2.56 3.686 7.68 22.07 0.00 0.63 2.19 3.32 0.0141 0.0131

Mc=0.20 0.350 0.078 2.29 3.699 7.66 21.73 0.00 0.48 1.84 3.10 0.0220 0.0199

Mc=0.15 0.318 0.114 1.80 3.735 7.65 21.30 0.00 0.40 1.27 2.64 0.0454 0.0407

Mc=0.10 0.312 0.142 1.73 3.747 7.63 21.24 0.00 0.39 1.17 2.56 0.0476 0.0425

Mc=0.05 0.307 0.218 1.66 3.756 7.61 21.21 0.00 0.38 1.11 2.48 0.0490 0.0435

Xc=0.00 0.283 0.897 1.25 3.771 7.55 21.02 0.00 0.40 0.94 2.15 0.0571 0.0508

M1 = 1.4M�, M2o = 2M�

Mc=0.10 0.315 0.070 1.71 3.761 7.69 21.22 0.00 0.40 1.09 2.51 0.0466 0.0413

Mc=0.00 0.304 0.124 1.57 3.750 7.60 21.27 0.00 0.45 0.99 2.44 0.0435 0.0387

Xc=0.10 0.293 0.460 1.41 3.760 7.58 21.19 0.17 0.45 0.98 2.29 0.0468 0.0416

aThe properties of donors that evolve to become HeDD’s at the point where they have just detached from their Roche lobes after

evolving off the RGB.

Note. — See the Note beneath Table 1a for an explanation of all of the columns and symbols used in this table.
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Table 2a. Representative Donor Propertiesa (Z = 0.02)

(Mc/Xc)o M2f t(Gyr) log L log Te logTc logPc Xc < X > log Porb,o logPorb,f Menv MX=0.1

M1 = 1.4M�, M2o = 1M�

Mc=0.25 0.332 0.935 -1.50 4.214 7.36 22.09 0.00 0.27 2.44 3.54 0.0017 0.0011

Mc=0.20 0.304 1.128 -1.50 4.195 7.33 21.95 0.00 0.27 2.05 3.25 0.0021 0.0013

Mc=0.15 0.270 1.608 -1.50 4.171 7.30 21.75 0.00 0.29 1.59 2.79 0.0024 0.0017

Mc=0.10 0.231 3.024 -1.50 4.136 7.26 21.49 0.00 0.24 1.28 2.15 0.0039 0.0024

Mc=0.05 0.215 3.960 -1.50 4.126 7.26 21.36 0.00 0.22 1.23 1.85 0.0045 0.0029

Xc=0.00 0.251 0.985 -1.50 3.563 7.08 18.45 0.00 0.38 1.08 0.73 na na

Xc=0.10 0.395 0.315 -1.50 3.541 7.00 17.40 0.10 0.56 0.98 0.70 na na

Xc=0.20 0.420 0.259 -1.50 3.539 6.98 17.24 0.20 0.59 0.95 0.69 na na

Xc=0.30 0.443 0.221 -1.50 3.536 6.96 16.87 0.30 0.62 0.93 0.69 na na

M1 = 0.7M�, M2o = 1M�

Xc=0.00 0.251 0.443 -1.50 3.564 7.09 18.44 0.00 0.38 1.08 0.73 na na

Xc=0.10 0.393 0.133 -1.50 3.540 7.00 17.37 0.10 0.56 0.98 0.69 na na

Xc=0.20 0.415 0.106 -1.50 3.536 6.97 17.21 0.20 0.59 0.95 0.69 na na

Xc=0.30 0.435 0.098 -1.50 3.533 6.95 17.08 0.30 0.62 0.93 0.69 na na

M1 = 1.4M�, M2o = 1.5M�

Mc=0.25 0.349 0.874 -1.50 4.223 7.38 22.18 0.00 0.28 2.42 3.69 0.0014 0.0010

Mc=0.20 0.306 1.137 -1.50 4.197 7.33 21.96 0.00 0.27 1.87 3.26 0.0021 0.0013

Mc=0.15 0.274 1.536 -1.50 4.175 7.31 21.77 0.00 0.30 1.52 2.84 0.0023 0.0017

Mc=0.10 0.267 1.765 -1.50 4.170 7.30 21.73 0.00 0.28 1.51 2.75 0.0026 0.0018

Mc=0.05 0.254 2.246 -1.50 4.156 7.28 21.65 0.00 0.26 1.45 2.55 0.0031 0.0020

Xc=0.00 0.206 5.020 -1.50 4.093 7.21 21.30 0.00 0.23 1.35 1.59 0.0055 0.0031

Xc=0.10 0.194 1.684 -1.50 3.581 7.21 18.45 0.00 0.24 1.30 0.74 na na

Xc=0.20 0.299 0.761 -1.50 3.550 7.12 17.60 0.13 0.42 1.28 0.74 na na

Xc=0.30 0.357 0.546 -1.50 3.544 7.05 17.34 0.25 0.50 1.24 0.71 na na

M1 = 1.4M�, M2o = 2M�

Mc=0.10 0.299 1.097 -1.50 4.194 7.35 21.91 0.00 0.28 1.60 3.06 0.0020 0.0014

Mc=0.00 0.285 1.262 -1.50 4.185 7.33 21.84 0.00 0.25 1.46 2.92 0.0024 0.0016

Xc=0.10 0.274 1.560 -1.50 4.176 7.31 21.77 0.00 0.24 1.46 2.77 0.0027 0.0018

Xc=0.30 0.249 1.080 -1.50 3.611 7.10 17.54 0.17 0.51 1.33 0.59 na na

aRepresentative properties of donors/HeDD’s that have evolved down to luminosities of log(L/L�) = −1.5.

Note. — See the Note beneath Table 1a for an explanation of all of the columns and symbols used in this table. The time t(Gyr) is

the age of the donor after its detachment from its Roche lobe (after it evolves off the RGB).
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Table 2b. Representative Donor Propertiesa (Z = 0.004)

(Mc/Xc)o M2f t(Gyr) log L log Te logTc logPc Xc < X > log Porb,o logPorb,f Menv MX=0.1

M1 = 1.4M�, M2o = 1M�

Mc=0.30 0.378 0.884 -1.50 4.249 7.37 22.33 0.00 0.19 2.75 3.67 0.0016 0.0009

Mc=0.25 0.335 1.013 -1.50 4.224 7.33 22.13 0.00 0.20 2.24 3.33 0.0023 0.0012

Mc=0.20 0.311 1.182 -1.50 4.210 7.31 22.01 0.00 0.20 1.94 3.10 0.0098 0.0088

Mc=0.15 0.291 1.414 -1.50 4.197 7.29 21.89 0.00 0.19 1.65 2.82 0.0033 0.0016

Mc=0.10 0.276 1.749 -1.50 4.184 7.27 21.80 0.00 0.19 1.49 2.61 0.0038 0.0018

Mc=0.05 0.265 1.976 -1.50 4.178 7.27 21.73 0.00 0.18 1.39 2.46 0.0041 0.0020

Xc=0.00 0.136 4.035 -1.50 3.712 7.16 19.17 0.00 0.14 1.18 0.42 na na

Xc=0.10 0.283 0.767 -1.50 3.594 7.07 17.70 0.08 0.46 1.08 0.62 na na

Xc=0.20 0.347 0.452 -1.50 3.581 6.99 17.37 0.18 0.56 1.02 0.61 na na

Xc=0.30 0.368 0.371 -1.50 3.576 6.97 17.24 0.28 0.60 0.99 0.61 na na

M1 = 0.7M�, M2o = 1M�

Xc=0.00 0.179 0.947 -1.50 3.638 7.10 18.66 0.00 0.27 1.18 0.58 na na

Xc=0.10 0.293 0.261 -1.50 3.591 7.06 17.62 0.12 0.47 1.08 0.61 na na

Xc=0.20 0.346 0.156 -1.50 3.579 6.98 17.10 0.19 0.57 1.02 0.61 na na

Xc=0.30 0.368 0.098 -1.50 3.575 6.96 17.21 0.30 0.60 0.99 0.61 na na

M1 = 1.4M�, M2o = 1.5M�

Mc=0.25 0.374 0.933 -1.50 4.246 7.37 22.31 0.00 0.19 2.44 3.62 0.0017 0.0009

Mc=0.20 0.343 1.038 -1.50 4.228 7.34 22.17 0.00 0.19 2.06 3.35 0.0023 0.0011

Mc=0.15 0.326 1.121 -1.50 4.219 7.32 22.08 0.00 0.18 1.84 3.17 0.0027 0.0013

Mc=0.10 0.309 1.155 -1.50 4.211 7.32 21.99 0.00 0.18 1.58 2.97 0.0029 0.0014

Mc=0.05 0.297 1.264 -1.50 4.203 7.31 21.92 0.00 0.18 1.43 2.85 0.0032 0.0015

Xc=0.00 0.270 1.601 -1.50 4.187 7.29 21.76 0.00 0.15 1.27 2.44 0.0040 0.0019

Xc=0.10 0.224 1.506 -1.50 3.632 7.10 17.66 0.13 0.30 1.14 0.55 na na

Xc=0.20 0.293 0.839 -1.50 3.600 7.01 17.33 0.31 0.44 1.08 0.59 na na

Xc=0.30 0.339 0.577 -1.50 3.587 6.97 17.19 0.42 0.53 1.03 0.60 na na

M1 = 1.4M�, M2o = 2M�

Mc=0.10 0.292 0.887 -1.50 4.207 7.34 21.87 0.00 0.11 1.40 2.92 0.0040 0.0017

Mc=0.00 0.279 1.059 -1.50 4.197 7.31 21.81 0.00 0.14 1.29 2.84 0.0039 0.0018

Xc=0.10 0.272 1.285 -1.50 4.192 7.30 21.76 0.00 0.13 1.29 2.78 0.0045 0.0019

Xc=0.30 0.214 3.623 -1.50 4.155 7.29 21.33 0.00 0.08 1.17 0.79 0.0083 0.0031

aRepresentative properties of donors/HeDD’s that have evolved down to luminosities of log(L/L�) = −1.5.

Note. — See the Note beneath Table 1a for an explanation of all of the columns and symbols used in this table. The time t(Gyr) is

the age of the donor after its detachment from its Roche lobe (after it evolves off the RGB).
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Table 2c. Representative Donor Propertiesa (Z = 0.0001)

(Mc/Xc)o M2f t(Gyr) log L log Te logTc logPc Xc < X > log Porb,o logPorb,f Menv MX=0.1

M1 = 1.4M�, M2o = 1M�

Mc=0.35 0.445 0.792 -1.50 4.282 7.39 22.63 0.00 0.06 2.88 3.65 0.0018 0.0006

Mc=0.30 0.395 0.854 -1.50 4.261 7.36 22.42 0.00 0.09 2.43 3.33 0.0029 0.0008

Mc=0.25 0.357 0.992 -1.50 4.241 7.33 22.24 0.00 0.11 2.02 3.02 0.0035 0.0010

Mc=0.20 0.349 1.093 -1.50 4.236 7.32 22.21 0.00 0.11 1.90 2.92 0.0040 0.0011

Mc=0.15 0.330 1.156 -1.50 4.224 7.31 22.11 0.00 0.10 1.73 2.80 0.0048 0.0012

Mc=0.10 0.307 1.412 -1.50 4.212 7.28 21.99 0.00 0.09 1.38 2.52 0.0063 0.0014

Mc=0.05 0.297 1.569 -1.50 4.208 7.27 21.93 0.00 0.09 1.22 2.37 0.0070 0.0016

Xc=0.00 0.272 2.337 -1.50 4.189 7.25 21.78 0.00 0.08 1.05 1.81 0.0087 0.0018

Xc=0.10 0.252 0.740 -1.50 3.650 7.06 17.66 0.09 0.44 0.91 0.47 na na

Xc=0.20 0.280 0.614 -1.50 3.642 7.02 17.47 0.17 0.51 0.89 0.48 na na

Xc=0.30 0.308 0.469 -1.50 3.633 6.97 17.29 0.27 0.57 0.88 0.48 na na

M1 = 0.7M�, M2o = 1M�

Xc=0.10 0.238 0.357 -1.50 3.656 7.07 17.66 0.09 0.41 0.93 0.46 na na

Xc=0.20 0.279 0.207 -1.50 3.639 7.00 17.41 0.19 0.52 0.89 0.47 na na

Xc=0.30 0.301 0.144 -1.50 3.632 6.95 17.24 0.29 0.57 0.88 0.48 na na

M1 = 1.4M�, M2o = 1.5M�

Mc=0.35 0.459 0.803 -1.50 4.288 7.40 22.68 0.00 0.05 2.75 3.71 0.0016 0.0005

Mc=0.30 0.405 0.848 -1.50 4.265 7.37 22.46 0.00 0.09 2.31 3.40 0.0026 0.0007

Mc=0.25 0.394 0.905 -1.50 4.259 7.36 22.42 0.00 0.09 2.19 3.32 0.0029 0.0008

Mc=0.20 0.350 0.997 -1.50 4.236 7.32 22.21 0.00 0.10 1.84 3.10 0.0044 0.0011

Mc=0.15 0.318 1.009 -1.50 4.222 7.31 22.04 0.00 0.08 1.27 2.63 0.0060 0.0013

Mc=0.10 0.312 1.020 -1.50 4.219 7.31 22.01 0.00 0.07 1.17 2.55 0.0064 0.0014

Mc=0.05 0.307 1.134 -1.50 4.216 7.30 21.98 0.00 0.08 1.11 2.47 0.0066 0.0014

Xc=0.00 0.283 2.043 -1.50 4.198 7.27 21.84 0.00 0.08 0.94 1.97 0.0079 0.0017

Xc=0.10 0.207 1.344 -1.50 3.678 7.12 17.96 0.04 0.32 0.87 0.43 na na

Xc=0.20 0.245 0.871 -1.50 3.658 7.06 17.62 0.13 0.41 0.85 0.45 na na

Xc=0.30 0.277 0.799 -1.50 3.646 7.01 17.41 0.23 0.49 0.83 0.46 na na

M1 = 1.4M�, M2o = 2M�

Mc=0.10 0.315 0.983 -1.50 4.220 7.31 22.02 0.00 0.08 1.09 2.50 0.0062 0.0013

Mc=0.00 0.304 1.156 -1.50 4.213 7.28 21.97 0.00 0.08 0.99 2.42 0.0069 0.0015

Xc=0.10 0.293 1.562 -1.50 4.206 7.27 21.91 0.00 0.08 0.98 2.27 0.0075 0.0015

Xc=0.30 0.195 1.101 -1.50 3.709 7.09 17.69 0.10 0.25 0.90 0.35 na na

aRepresentative properties of donors/HeDD’s that have evolved down to luminosities of log(L/L�) = −1.5.

Note. — See the Note beneath Table 1a for an explanation of all of the columns and symbols used in this table. The time t(Gyr) is

the age of the donor after its detachment from its Roche lobe (after it evolves off the RGB).
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Table 3a. Evolutionary Tracka (Vigorous Shell Flash)

Point ∆t (Gyr) log L/L� log Teff (K)

1 7.44 1.33 4.596

2 7.82 0.54 4.521

3 13.15 -0.36 4.376

4 32.61 0.24 4.492

5 32.61 0.11 4.439

6 32.61 1.33 4.395

7 32.61 2.74 3.941

8 32.62 2.38 4.479

9 43.70 -0.73 4.326

10 196.8 -0.77 4.338

aInitial conditions correspond to M2,o =

1.5M� , Mc = 0.10M�, and Z = 0.004.

Note. — Each Point is labeled in Figure 19.

The explanation of the columns is the same as

that given in the caption beneath Table 3a.
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Table 3b. Evolutionary Tracka (Mild Thermal Pulse)

Point ∆t (Myr) log L/L� log Teff (K)

1 0.80 2.70 4.328

2 1.18 2.05 4.805

3 1.21 1.00 4.686

4 1.23 0.60 4.618

5 1.62 0.00 4.505

6 4.52 -0.40 4.430

7 17.5 -0.60 4.394

8 127 -0.80 4.366

9 312 -1.00 4.337

10 1360 -1.75 4.195

aInitial conditions correspond to M2,o =

1.5M� , Mc = 0.25M�, and Z = 0.004.

Note. — Each Point is labeled in Figure

18. ∆t (in Gyr) is the age of the donor mea-

sured from the point when the donor detaches

from its Roche lobe (just after evolving off the

RGB). log L/L� and log Teff(K) are the lu-

minosities and effective temperatures of the

donors at the respective points.


