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ABSTRACT
We critically examine the basic paradigm for the origin of the 2È3 hr period gap in cataclysmic vari-

ables (CVs), i.e., binary systems in which a white dwarf accretes from a relatively unevolved, low-mass
donor star. The observed orbital period distribution for D300 CVs shows that these systems typically
have orbital periods, in the range of D80 minutes to D8 hr but a distinct dearth of systems withPorb,This latter feature of the period distribution is often referred to as the ““ period gap.ÏÏ2 [ Porb(hr) [ 3.
The conventional explanation for the period gap involves a thermal bloating of the donor star for

hr due to mass transfer rates that are enhanced over those that could be driven by gravitationalPorbZ 3
radiation (GR) losses alone (e.g., magnetic braking). If for some reason the supplemental angular momen-
tum losses become substantially reduced when decreases below D3 hr, the donor star will relaxPorbthermally and shrink inside of its Roche lobe. This leads to a cessation of mass transfer until GR losses
can bring the system into Roche lobe contact again at hr. We carry out an extensive populationPorbD 2
synthesis study of CVs, starting from D3 ] 106 primordial binaries and evolving some D2 ] 104 sur-
viving systems through their CV phase. In particular we study current-epoch distributions of CVs in the

and planes, where is the mass transfer rate, q is theM-5 Porb, R2-Porb, M2-Porb, q-Porb, Teff-Porb, L 2-Porb M0
mass ratio and and are the donor star mass, radius, e†ective temperature, andM2/M1, M2, R2, Teff, L 2luminosity, respectively. This work presents a new perspective on theoretical studies of the long-term
evolution of CVs. In particular, we show that if the current paradigm is correct, the secondary masses in
CVs just above the period gap should be as much as D50% lower than would be inferred if one assumes
a main-sequence radius-mass relation for the donor star. We quantify the relations expectedM2-Porbfrom models wherein the donor stars are thermally bloated. Finally, we propose speciÐc observations,
involving the determination of secondary masses in CVs, that would allow for a deÐnitive test of the
currently accepted model (i.e., interrupted thermal bloating) for the period gap in CVs.
Subject headings : binaries : close È novae, cataclysmic variables È stars : evolution È

stars : low-mass, brown dwarfs È stars : mass loss

1. INTRODUCTION

Cataclysmic variables (CVs) are short-period binary
systems consisting of a white dwarf that accretes matter via
Roche lobe overÑow from a low-mass companion star.
These objects exhibit a wide range of phenomenology,
including optical Ñickering in nova-like systems, dwarf nova
eruptions that are thought to be caused by thermal insta-
bilities in the accretion disks, and classical nova explosions,
which are thermonuclear runaways of the accreted matter
on the white dwarf (see, e.g., Warner 1995). The range of
observed phenomena depends on the mass transfer rate, the
mass ratio of the stellar components, and the magnetic Ðeld
strength of the accreting white dwarf. The orbital periods of
the majority of CVs range from 8 hr down to about 78
minutes, but both longer and shorter period systems are
known. In the former case, the donor stars are typically
somewhat evolved, while in the latter case, the donor stars
are hydrogen-exhausted. In this paper we focus on the gap
that exists in the orbital period distribution of CVs in the

1 Present address : Physics Department, BishopÏs University, Lennox-
ville, QC J1M 1Z7, Canada.

range of D2È3 hr (see, e.g., Warner 1976 ; Rappaport,
Verbunt, & Joss 1983, hereafter RVJ ; Spruit & Ritter 1983 ;
Hameury et al. 1988a ; Warner 1995).

The overall evolution of CV binaries is thought to be
fairly well understood. The widely accepted explanation for
the period gap rests on a mechanism for extracting angular
momentum from the binary orbit (e.g., via magnetic braking
of the secondary) for periods down to D3 hr, followed by a
relatively substantial decrease in the angular momentum
loss rate.2 The donor star, which had been thermally
““ bloated ÏÏ in response to the mass loss driven by the sys-
temic angular momentum losses, is then able to relax inside
of its Roche lobe, and mass transfer ceases. The donor star
is then thought to reestablish Roche lobe contact by the
time the orbital period has decreased to about 2 hr, after
which mass transfer resumes. In this paper we critically
examine this paradigm for the creation of the period gap.
While most workers believe in the existence of the so-called
2È3 hr period gap, a few (e.g., Wickramasinghe & Wu 1994 ;

2 We note that this scenario does not require the angular momentum
loss rate to drop suddenly. Instead, it requires only that the timescale over
which the angular momentum loss rate decreases must be shorter than the
thermal timescale of the donor.
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Verbunt 1997 [but see also Warner 1995 ; Wheatley 1995])
have questioned its reality, especially when all types of CVs
are considered ; however, we adopt the view that the period
gap is a real feature of the CV population as a whole and, as
such, requires a theoretical explanation (with observational
tests) within the context of their binary evolution. Finally in
this regard we note a suggestion by Clemens et al. (1998)
that the period gap results from a ““ kink ÏÏ in the radius-mass
relation for main-sequence stars at a mass of about D0.25

(but see the rebuttal by Kolb, King, & Ritter 1998).M
_In ° 2 we describe the conventional picture of the evolu-

tion of a typical CV, including the period gap, and show
some illustrative examples of binary evolution calculations
for individual systems. In ° 3 we explore how the binary
evolution alters the relations among mass, radius, and
orbital period of the secondary star. SpeciÐcally we discuss
how the main-sequence radius-mass relationship must be
modiÐed to include the addition of a ““ bloating factor ÏÏ that
accounts for the changes caused by departures from thermal
equilibrium of the mass-losing secondary star. We derive
semianalytic mass-period and radius-period relationships
for CV secondaries. In ° 4 we describe our population syn-
thesis and binary evolution codes, while in ° 5 we present
results from our population synthesis study of CVs in which
the binary parameters of the CVs at all phases of their
evolution are explored. In ° 6 we show how assumptions
that the donor star has a main-sequence radius-mass rela-
tion can lead to large errors in the assignment of the constit-
uent stellar masses, most notably within the orbital period
range of 3È5 hr. This period range should encompass the
maximum bloating exhibited by a CV secondary compared
to a main-sequence star of the same mass. Also in ° 6 we
discuss some speciÐc observational implications resulting
from our theoretical work. In particular, we present a spe-
ciÐc test for CVs just above the period gap, which will
enable us, in principle, to distinguish unambiguously
among di†erent possible explanations for the period gap.
Finally, we present our summary and conclusions in ° 7.

2. STANDARD EVOLUTIONARY SCENARIO FOR CVs

In the conventional picture of CV evolution (see, e.g.,
Faulkner 1971 ; & Sienkiewicz 1981 ; Rappaport,Paczyn� ski
Joss, & Webbink 1982, hereafter RJW; RVJ; Spruit &
Ritter 1983 ; Hameury et al. 1988a ; Kolb 1993), the early
phases are expected to be dominated by angular momen-
tum losses due to magnetic braking via a magnetically con-
strained stellar wind from the donor star (see, e.g., Verbunt
& Zwaan 1981 ; RVJ). In these early phases, mass transfer
rates are typically D10~9 to 10~8 yr~1, and orbitalM

_periods range from D8 hr to D3 hr, just at the upper edge
of the period gap. At some point in the evolution, the sec-
ondary becomes completely convective (at D0.23 and,M

_
)

in the currently accepted view, magnetic braking is assumed
to be greatly reduced. The near cessation of magnetic
braking reduces the mass transfer rate and allows the sec-
ondary to shrink toward its thermal equilibrium radius.
This causes a period of detachment, during which dropsM0
to essentially zero, which lasts until the Roche lobe shrinks
sufficiently to bring the secondary back into contact with it,
at an orbital period of D2 hr. This is the commonly
accepted explanation for the observed period gap between
2È3 hr in CVs (RVJ ; Spruit & Ritter 1983).

When mass transfer recommences at hr, it isPorbD 2
then driven largely by gravitational radiation losses at rates

of D10~10 yr~1. As the orbit shrinks and the mass ofM
_the donor star decreases, the mass-loss timescale increases,

but the thermal timescale, increases much faster, owingqKH,
to its approximate DM~2 dependence. Therefore, at some
point the thermal timescale grows larger than the mass
transfer timescale. When this occurs, the donor star
is unable to adjust to the mass loss on its thermal time-
scale, and it therefore starts to expand upon further mass
loss, in accordance with its adiabatic response ; i.e.,

Typically, at this point the orbital[d ln (R)/d ln (M)]ad\ 0.
period is D80 minutes and the mass of the donor star is
D0.06 From this point on, the mass of the donor starM

_
.

will continue to decrease (but with longer and longer M0
timescales), the orbital period will increase back toward
periods approaching D2 hr (within a Hubble time), and the
interior of the donor star will become increasingly electron
degenerate. A discussion of this later stage of CV evolution
is presented by Howell, Rappaport, & Politano (1997, here-
after HRP).

To make these evolutionary descriptions somewhat more
quantitative, we show in Figure 1 the secular evolution of
several model CVs under the inÑuence of magnetic braking
and gravitational radiation. The evolution code used to
generate these results is a descendant of the one used by
RVJ and is described in ° 4.2 along with recent improve-
ments to the code. The two panels on the left-hand side of
Figure 1 show the evolution with time of a CV binary with
initial constituent masses of andM2\ 0.9 M

_
MWD\ 1.1

where and are the masses of the donor starM
_

, M2 MWDand white dwarf, respectively. Other parameters used in the
calculation are for our ““ standard model ÏÏ (see Table 1 for
deÐnitions). The top and bottom panels show the evolution
with time of the mass transfer rate and orbital period,
respectively, for an assumed donor star with solar composi-
tion. The calculations have been carried out to approx-
imately the age of the Galaxy. The evolutionary phases and
features discussed above are present in Figure 1, including
the interval where mass transfer is driven by magnetic
braking (D107.3È108.4 yr), the period gap (D108.4È108.8 yr),
the interval where is driven by gravitational radiationM0
losses ([108.8 yr), the period minimum at 109.4 yr, the sub-
sequent increase in back up to D2 hr, and the sharpPorbfallo† in after orbital period minimum.M0

On the right-hand side of Figure 1 the temporal evolu-
tion of four other illustrative model CV binaries are shown.
The following discussion contains descriptions of the period
gap that develops in these systems ; these are easier to
visualize by looking also at Figure 2. The initial masses

TABLE 1

SUMMARY OF MODEL PARAMETERS

Model ba ab cc CMBd

A. Standard model . . . . . . . . . . . . . . . . . . . . . . . . 0 1 3 1
B. Reduced magnetic braking . . . . . . . . . . . . 0 1 3 1/2
C. High angular momentum losses . . . . . . 0 2 3 1
D. Conservative mass transfer . . . . . . . . . . . 1 . . . 3 1

a Fraction of mass lost by the donor star that is transferred to, and
ultimately retained by, the white dwarf.

b SpeciÐc angular momentum carried away in nova explosions in
units of the speciÐc angular momentum of the white dwarf.

c Magnetic braking parameter c as deÐned in RVJ.
d Proportionality constant in the magnetic braking expression used

by RVJ, in units of their ““ standard ÏÏ value.



No. 2, 2001 PERIOD GAP IN CATACLYSMIC VARIABLES 899

FIG. 1.ÈEvolution with time of the mass transfer rate, and orbital period, for several model cataclysmic variable systems. L eft : the evolution of aM0 , Porb,single CV with initial masses This system Ðrst comes into Roche lobe contact at hr and evolves through the period(M2\ 0.9 M
_

; MWD \ 1.1 M
_
). Porb \ 6

gap to the minimum in and back up to longer periods by 1010 yr. Right : the evolutions of a selection of four other illustrative initial binary constituentPorbmasses, 0.4 (solid line), 0.35, 0.35 (dotted line), 0.3, 0.6 (dashed line), and 0.65, 0.7 (long-dashed lined), all in units ofM2, MWD \ 0.2, M
_

.

of these systems are (0.2, 0.4), (0.35, 0.35), (0.3,(M2, MWD)0.6), and (0.65, 0.7), all in units of For the system withM
_

.
initial masses (0.2, 0.4) the binary comes into Roche lobe
contact for the Ðrst time at an orbital period below the gap,
i.e., at hr (Figs. 1c and 1d, solid curves). Note thePorb\ 2
enhanced mass transfer rate at D30 Myr after Roche lobe
contact is made. The subsequent evolution is not dissimilar
to the one shown in the left-hand panels. For the system
with initial masses (0.35, 0.35), the donor star commences
mass transfer at a period of 3.3 hr, with magnetic braking
still operative (Figs. 1c and 1d, dotted curves). Because the
two masses are the same when the donor star Ðrst Ðlls its
Roche lobe, the mass transfer is only marginally stable (see
the discussion in ° 4.2 below). Therefore, is initially veryM0
high and the system is quickly driven out of thermal equi-
librium, causing the orbit to expand. This system comes out
of contact (i.e., enters the period gap) at an orbital period of
3.5 hr. The system with initial masses (0.3, 0.6) is an example
of one that commences mass transfer in the period gap.
Lastly, the system with initial masses (0.65, 0.7) is another
example of a system that exhibits the ““ usual ÏÏ 2È3 hr period
gap, but commences mass transfer at hr.Porb\ 5

In Figure 2 the same evolutions shown in Figure 1 are
again presented, but this time the binary parameters are
displayed as a function of the evolving orbital period. As in
Figure 1, the left-hand panels are for initial masses (M2,of (0.9, 1.1), while the right-hand panels are for initialMWD)masses of (0.2, 0.4), (0.35, 0.35), (0.3, 0.6), and (0.65, 0.7). The
top, middle, and bottom panels show the evolution of M0 ,

and respectively. As mentioned above, the periodM2, R2,gap is more evident in Figure 2 than it is in Figure 1. We
note here several unique features associated with the evolu-
tion of individual CVs ; an understanding of these features
will aid our interpretation of the results obtained for an
entire population of evolving CV systems (see ° 5). For
example, typically exhibits a sharp spike at the onset ofM0
mass transfer, (see also RVJ and Hameury et al. 1988b) ; this
behavior will appear in all of the two-dimensional
““ images ÏÏ we produce from the population synthesis calcu-
lations in ° 5. The mass of the donor stays constant during
its evolution through the period gap since there is no mass
transfer taking place at that timeÈthis is indicated by the
horizontal lines in the middle panels. The abrupt shift in
location between the track above the period gapM2-Porb
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FIG. 2.ÈEvolution with orbital period, of the mass transfer rate, secondary mass, and secondary radius, for several illustrative modelPorb, M0 , M2, R2,cataclysmic variable systems. The initial masses for the systems whose evolutions are displayed in the left and right sets of panels are the same as described in
Fig. 1.

and below the gap will be dramatically apparent in the
population synthesis results and will have important conse-
quences that are discussed below. Finally, the radius of the
donor star decreases sharply after the system enters the
period gap ; in fact, it is the shrinking of the donor inside of
its Roche lobe when the magnetic braking ceases that is the
putative cause of the period gap. Again, the abrupt shift

between the track above and below the period gapR2-Porbwill be very pronounced in the population synthesis results.
A noteworthy feature of Figures 1a, 1c, 2a, and 2d men-

tioned above is the sharp rise in whenever mass transferM0
has just commenced, including the Ðrst time that the donor
star Ðlls its Roche lobe and after the resumption of mass
transfer below the period gap. This results from the fact that
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when a low-mass star (i.e., is in thermal equi-[0.5 M
_
)

librium (i.e., the nuclear luminosity, equals the bolo-L nuc,metric luminosity, the sudden onset of mass transferL opt),forces the star to expand because its adiabatic index is nega-
tive (discussed above). This expansion can cause a tempo-
rarily anomalously high rate of mass transfer, viz., the
episodes of high seen in Figures 1a, 1c, 2a, and 2d.M0
However, as soon as the donor star expands, its core tem-
perature drops slightly, and which is a highly sensitiveL nuc,function of temperature, drops dramatically. This leads to a
luminosity deÐcit wherein The star can thenL nuc\ L opt.lose a net amount of energy, shrink, and approach its new
thermal equilibrium radius (appropriate to its lower mass)
on a Kelvin-Helmholtz (i.e., thermal) timescale. During the
mass-loss process, true thermal equilibrium is never
reached, and the luminosity deÐcit attains a value that is
adequate to allow the star to shrink continuously. The
above discussion explains the transient episodes of higher
transfer rates at the start of mass transfer epochs and the
““ outlying ÏÏ lower probability CV states we shall encounter
in ° 5. It also explains the thermal ““ bloating ÏÏ of the donor
star, which is discussed in ° 3 and will play a key role in the
observational test we propose in ° 6. (For earlier discussions
of some of these basic e†ects, see RJW and Hameury et al.
1988a.)

The Ðve individual evolutions shown in Figures 1 and 2
serve to illustrate the range of interesting possibilities for
CVs that commence mass transfer with di†erent mass
ratios. The population synthesis study described in ° 5
explores these various possibilities in a more systematic and
complete way.

3. QUANTITATIVE EFFECTS OF THERMAL BLOATING OF

THE SECONDARY STAR

We start with the assumption that during mass transfer in
a CV the Roche lobe of the donor star is located within its
atmosphere, i.e., the donor star is ““ Ðlling ÏÏ its Roche lobe
(see Howell et al. 2000). We then take the Roche lobe radius
of the secondary star to be given by the simple expression of
Kopal (1959) :

R2^ 0.46a
A M2
M2 ] MWD

B1@3
. (1)

This can be combined with KeplerÏs third law to yield the
well-known relationship among the mass, radius, and
orbital period of the donor star :

Porb(M2, R2)^ 9M2~1@2R23@2 , (2)

where and are expressed in units ofM2, R2, Porb M
_

, R
_

,
and hours, respectively. If we now assume that the radius of
the donor star is some factor f times the radius it would
have if it were a normal main-sequence star, we can write

R2\ faM2b , (3)

where we approximate the radius-mass relation for stars on
the lower main sequence (i.e., G to M stars) by R2\ aM2b ,where a and b are constants, and we refer to f as the
““ bloating factor.ÏÏ This bloating factor f is simply a measure
of how much larger the radius of a CV secondary is than
that of a single, main-sequence star of the same mass owing
to the departure from thermal equilibrium. We can now
combine equations (2) and (3) to derive relations for the
mass and radius of CV secondaries as a function of the

binary orbital period :

M2^ 9~2@(3b~1)Porb2@(3b~1)(af )~3@(3b~1) , (4)

R2^ 9~2b@(3b~1)Porb2b@(3b~1)(af )~1@(3b~1) . (5)

For the purposes of this exercise, we take a \ 0.85 and
b \ 0.85, which we Ðnd by Ðtting a power law to the main-
sequence models of Dorman, Nelson, & Chau (1989, here-
after DNC). With these values for the constants a and b, the
above equations simplify to

M2(Porb) ^ 0.08f ~1.95Porb1.3 , (6)

R2(Porb) ^ 0.10f ~0.65Porb1.1 , (7)

where, again, and are in solar units and is inM2 R2 Porbhours. The conclusions drawn from these expressions are
somewhat counterintuitive in that, for a CV at a given
orbital period, if the donor star is bloated, the proper radius
and mass that should be inferred from the orbital period are
smaller than the values that would be inferred if the star
were on the main sequence (see also Beuermann et al. 1998).
In ° 6 we derive polynomial Ðts for andM2(Porb) R2(Porb)from our population synthesis study ; the analytic expres-
sions given by equations (6) and (7) serve mainly to demon-
strate how these quantities scale with the bloating factor f.

4. POPULATION SYNTHESIS STUDY

The individual binary evolution runs shown in Figures 1
and 2 for several di†erent combinations of initial constitu-
ent masses are instructive, but they do not (1) adequately
sample the full range of possible initial masses or (2) provide
us with the distributions of CV binary properties at the
current epoch. We have therefore undertaken a population
synthesis study of CVs that consists of two parts. In the Ðrst
part, we utilize a Monte Carlo approach to select a large
number (D3 ] 106) of primordial binaries and follow the
evolution of these systems to see which ones undergo a
common envelope phase. In such events, the envelope of the
giant star engulfs the secondary, leading to a spiral-in
episode that leaves the secondary in a close orbit with a
white dwarf (i.e., the core of the primary star ; see, e.g.,

1976 ; Webbink 1979 ; see also ° 4.1 for details).Paczyn� ski
Primordial binaries that are too wide will not undergo any
signiÐcant mass transfer and will not lead to the formation
of CV systemsÈthe evolution of such wide binaries is not
followed in the present study. Successful systems that
emerge from the Ðrst part of our population synthesis calcu-
lations are those that do undergo a common envelope
phase and yield a close binary consisting of a white dwarf
and low-mass companion. The second part of the([1 M

_
)

population synthesis considers those white-dwarf main-
sequence binaries for which systemic angular momentum
losses, or a modest amount of evolution by the normal
companion star, can initiate Roche lobe contact within a
Hubble time. Each of these systems is then evolved in detail
through the mass transfer phase (CV phase) until the donor
star has been reduced to a negligible mass (typically 0.03
M

_
).

A number of prior population synthesis studies of
cataclysmic variables have been carried out. These include
work by Politano (1988, 1996), de Kool (1992), Kolb (1993),
Di Stefano & Rappaport (1994, for CVs in globular
clusters), and HRP (emphasizing systems that evolve
beyond the orbital period minimum). The current study has
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several new features and advantages over the previous
studies. First, we compute probability density functions in
two parameters, e.g., and (see ° 4.3). ThisM0 Porb M2 :Porbway of studying and evaluating the results of population
synthesis calculations has a distinct advantage over produc-
ing distributions of a single parameter. For example, we are
able to quantitatively evaluate phases of the evolution that
are short-lived or represent unusual evolutionary states
(e.g., whenever Roche lobe contact has just been established
or when the initial binary mass ratio is near unity). Other
examples include the ability to discern the spread in at aM0
given orbital period, the distinction between systems with
He and CO white dwarfs, and the pronounced depression in
secondary mass at a given orbital period (for systems just
above the period gap). A second advantage is that our code
for evolving the donor stars was originally developed to
evolve brown dwarfs of very low mass to very old ages. The
code has been well ““ calibrated ÏÏ against other more sophis-
ticated ones that have been used for the purpose of evolving
brown dwarfs (see ° 4.1). Finally, our population synthesis
code, which is used to generate the zero-age CVs that are
input to the binary evolution code, provides an independent
check on previous work and tests the sensitivity of our
conclusions to various uncertainties in the physics, initial
conditions, and other input parameters.

Finally, we mention a possibly important limitation on
the study we present here, which also applies to most other
prior work in this area. We have considered only donor
stars with and we do not allow for the chemi-M2¹ 1 M

_
,

cal (nuclear) evolution the donor. The latter approximation
is realistic if the donor star commences mass transfer within
D3 ] 109 yr of the common envelope event, or if the donor
has a mass of These conditions apply to most of[0.7 M

_
.

the systems that successfully evolve through the CV phase
in our calculations. Furthermore, we Ðnd that only D5% of
all the stable mass transferring, zero-age CVs in our popu-
lation synthesis study have secondaries that are older than
one-third of their main-sequence lifetime prior to the start
of mass transfer. Theoretically, there should indeed be some
CVs that evolve from donor stars that are initially more
massive than 1 and they should be followed in futureM

_
,

population synthesis studies. For the present study, we
simply assume that such systems, with donors whose initial
mass exceeds 1 do not contribute substantially to theM

_
,

CV population and, above all, would not a†ect our conclu-
sions concerning systems near the period gap.

In this regard, recent work by Beuermann et al. (1998)
examines the properties of the secondary star in CVs in an
e†ort to determine whether they are indeed similar to
normal main-sequence stars. They show that, in the spectral

plane, the D50 CVs with measured spectral typestypeÈPorblie below the expected relation for main-sequence stars (i.e.,
they are cooler at a Ðxed value of Beuermann et al.Porb).conclude that for systems with hr this e†ect couldPorb \ 6
result from mass loss (see ° 5) but that for longer orbital
periods this e†ect suggests chemical evolution of the donor
star. This is a potentially important Ðnding for systems with
orbital periods longer than we consider here and could also
possibly impact the shorter period systems as well. From
our population synthesis results, we Ðnd that D10% of CVs
could potentially form with progenitors whose mass is ini-
tially sufficiently high (i.e., that chemical evolutionZ1 M

_
)

of the donor star might indeed be signiÐcant. Systems with
such donor stars are not followed in the present study. If, for

some as yet unknown reason, the more massive donor stars
have a greater efficiency for producing CVs than their
lower-mass counterparts, then chemical evolution may
indeed prove inÑuential in the evolution of CVs. These pos-
sibilities should be examined in future population synthesis
studies.

4.1. Choosing the Zero-Age CVs
The properties of the primordial binary systems are

chosen via Monte Carlo techniques as follows. The primary
mass is picked from EggletonÏs (2000) Monte Carlo repre-
sentation of the Miller & Scalo (1979) initial mass function
(IMF),

M1(x) \ 0.19x[(1[ x)3@4] 0.032(1[ x)1@4]~1 , (8)

where x is a uniformly distributed random number. This
distribution Ñattens out toward lower masses, in contrast
with a Salpeter-type power-law IMF (1955). We considered
primary stars whose mass is in the range of 0.8 \M1\ 8

Next, the mass of the secondary, is chosen fromM
_

. M2,the probability distribution, f (q) \ 5/4q1@4, where q 4
(Abt & Levy 1978 ; but also see Halbwachs 1987).M2/M1This mass ratio distribution is, at best, poorly known

empirically. Our adopted distribution has the property that
the mass of the secondary is correlated with the mass of the
primary but is not strongly peaked toward q \ 1. We Ðnd
that our results are not very sensitive to the choice of f (q),
unless an extreme is adopted such as the assumption that
the two masses are to be chosen completely independently
of one another (see, e.g., Table 2 and Fig. 4 in Rappaport,
Di Stefano, & Smith 1994, hereafter RDS). Secondary
masses as small as 0.09 are chosen (we wanted to ensureM

_that only stars with masses clearly above the minimum
main-sequence mass are included). To choose an initial
orbital period, a distribution that is uniform in log (P) over
the period range of 1 day to 106 yr is used (see, e.g., Abt &
Levy 1978 ; Duquennoy & Mayor 1991). Since we consider
only circular orbits, the adopted orbital period distribution
more properly pertains to the tidally circularized orbits
than to the initial orbits of the primordial binaries.

After the masses and orbital period are chosen, the
orbital separation is calculated using KeplerÏs third law. We
utilize an analytic expression for the relation among the
core mass, the radius, and the total mass of the primary to
estimate the mass of the degenerate core, when theMWD,
primary Ðlls its Roche lobe. The expression we used for this
purpose (see RDS) was designed to reproduce the features
of Figure III.2 of Politano (1988) and Figure 1 of de Kool
(1992), except that the core-mass radius relation for stars
with mass was renormalized to match the Ðtting[2 M

_formula of Eggleton (2000 ; see eq. [4] of Joss, Rappaport,
& Lewis 1987). Mass loss via a stellar wind prior to the start
of the Ðrst mass transfer phase was computed via an analy-
tic expression derived by M. Politano (1999, private
communication). In practice, the inclusion of this wind mass
loss does not signiÐcantly a†ect the results.

In order to select only systems that undergo a common
envelope phase we require that the radius of the Roche lobe
of the primary be larger than the radius of a star of mass M1at the base of the giant branch (see, e.g., 1965 ;Paczyn� ski
Webbink 1979, 1985, 1992 ; de Kool 1992, and references
therein). This ensures that unstable mass transfer will occur
on a timescale that is substantially shorter than a thermal
time and should lead to a common-envelope phase. Once
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mass transfer from the primary to the secondary com-
mences, we assume that a common envelope phase occurs
and compute the Ðnal spiral-in separation based on simple
energetic considerations (see, e.g., Taam, Bodenheimer, &
Ostriker 1978 ; Meyer & Meyer-Hofmeister 1979 ; Livio &
Soker 1988 ; Webbink 1992 ; RDS; Taam & Sandquist
1998). The expression we use for determining the Ðnala

f
,

orbital separation after spiral-in, is given by

vGM2
2

AMcore
a
f

[M1
a
i

B
\ GMenv(Menv] 3Mcore)

R1
, (9)

where and are the core and envelopeMcore4 MWD Menvmasses of the primary, is the radius of the primary, isR1 a
ithe initial orbital separation, and v is the energy efficiency

factor for ejecting the envelope. We take v to have a value of
1.0 in our standard model. The two terms in parentheses on
the right-hand side of equation (9) represent the binding
energy of the envelope of the primary to itself and to its
core. The dimensionless coefficients multiplying each term
were computed for an assumed polytropic envelope struc-
ture with polytropic index n \ 3.5 (RDS). For other similar
values of n the ratio of D3:1 between the two coefficients is
roughly the same. We assume that the duration of the
spiral-in is sufficiently short (\104 yr ; see above references)
that the mass of the secondary does not change signiÐcantly
during the common envelope phase.

After the spiral-in episode, the separation, the white
dwarf mass, the secondary mass, and the corresponding
Roche lobe radius of the secondary are known. If at the end
of the common envelope phase the secondary would
already be overÐlling its Roche lobe, then we eliminate the
system. (In most cases, this circumstance would be expected
to lead to a merger of the secondary star with the degener-
ate core of the primary, which presumably would result in
the formation of a giant star.) In practice, if the Roche lobe
is larger than D20 then neither magnetic braking norR

_
,

gravitational radiation would bring the system into Roche
lobe contact before the secondary would evolve past the
base of the giant branch. We can also eliminate these
systems since the ensuing mass transfer would either be
dynamically unstable (see, e.g., 1967 ; Kippen-Paczyn� ski
hahn, Kohl, & Weigert 1967 ; Webbink 1979, 1992) or lead
to an even wider orbit ; either case would not produce a CV
of the ordinary kind.

We typically start with (3È5)] 106 primordial binaries
and end up with D15,000 pre-CVs to evolve through the
mass transfer phase with the bipolytrope evolution code
described in the next section. The computational time for
this Ðrst portion of the calculations is negligibly short.

4.2. Evolving the CVs through T heir Mass Transfer Phase
As mentioned earlier, the evolutionary tracks of CV

systems are calculated using a version of the code that was
Ðrst developed by RVJ (see also RJW) to explore the e†ects
of the parameterized Verbunt & Zwaan (1981) magnetic
braking law on the evolutionary properties of cataclysmic
variables. According to their algorithm, the mass-losing
donor is approximated by a bipolytrope wherein the con-
vective envelope is represented by an n \ 3/2 polytrope and
the radiative core by an n \ 3 polytrope. One of the advan-
tages of this code is that it allows for the rapid computation
of a large number of evolutionary tracks and provides a
more physically intuitive interpretation of the results. The

original version of the code has been modiÐed substantially
to allow for improvements to the input physics and to
ensure that the conditions near the surface (atmosphere) are
more physically realistic. A number of these changes have
been discussed in previous papers.

The most signiÐcant of these modiÐcations and updates
are described by Nelson, Rappaport, & Joss (1986a, 1986b,
1993), who used a single polytrope model to follow the
evolution of fully convective low-mass stars and brown
dwarfs. The results of the brown dwarf cooling evolutions
and the calculation of zero-age main-sequence (ZAMS) star
models of low-mass stars are in excellent agreement with
those calculated using more sophisticated techniques (see,
e.g., DNC; Burrows et al. 1993, 1997 ; Bara†e et al. 1998,
and references therein). SpeciÐcally, coulombic corrections
to the pressure equation of state were incorporated and an
updated version of the Alexander, Johnson, & Rypma
(1983 ; D. R. Alexander 1989, private communication) low-
temperature, radiative (surface) opacities was used. The
molecular hydrogen partition function was also calculated
more accurately. Most importantly, the speciÐc entropy at
the surface was matched directly to the speciÐc entropy in
the interior, i.e., at the interface between the radiative core
and the convective envelope.3

In addition to these changes, the atmospheric pressure
boundary condition was modiÐed so as to approximate
more closely the scaled solar T -q (Krishna-Swamy 1972)
relation. The radiative surface opacities did not include the
e†ects of grain formation. Since grains can only form in the
atmospheres of very low temperature stars (¹1500 K), this
should a†ect mostly the evolution of those CVs that have
evolved beyond the orbital period minimum. However, we
have found that the evolution of CVs through and beyond
the period minimum is not particularly sensitive to this
omission.

The overall result of all of these changes is that the theo-
retical radius-mass relation for our ZAMS models with
masses ¹1.0 is now in substantial agreement withM

_other theoretical calculations as well as with observational
studies of low-mass stars (see DNC). For similar abun-
dances of hydrogen and for stars of approximately solar
metallicity, we Ðnd that the radii of our new models com-
pared with other theoretical models (and the DNC results)
typically agree to within an rms error of D3% (M ¹ 1.0

Deviations among the theoretical models are greatestM
_
).

for the higher mass stars because of uncertainties in the
mixing length parameter and the treatment of inefficient
(superadiabatic) convection. When observations of double
stars are considered, we believe that our ZAMS radii are
accurate to within D5%. Our ZAMS models become fully
convective at a mass of D0.34 This is considerablyM

_
.

smaller than the value given in RVJ but agrees well with the
DNC results (as well as with newer generations of models).

Mass transfer in CVs is driven by angular momentum
losses due to gravitational radiation (Landau & Lifshitz
1962) and other systemic angular momentum losses such as
““ magnetic braking.ÏÏ The magnetic braking law that we

3 A small entropy mismatch was introduced to correct for thin regions
of superadiabatic convection/radiative transport that exist beneath the
photosphere of the more massive stars in our mass range. These correc-
tions depend on the assumed value of the mixing length parameter and
were chosen so as to provide the best possible representations of ZAMS
stars. They were largest for the 1.0 model (D5% of the speciÐcM

_entropy), decreasing to zero for fully convective stars.
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utilize is that of Verbunt & Zwaan (1981) and param-
eterized by RVJ. The magnetic braking parameters were
chosen so as to best reproduce the observed period gap.
According to the parameterization described in RVJ, we
took c\ 3 and did not adjust the multiplicative constant
(deÐned here as used in the RVJ prescription. We alsoCMB)““ shut o† ÏÏ magnetic braking when the radiative core had
been reduced to less than 15% of the mass of the donor.
Magnetic braking is assumed to be greatly reduced as a
result of the restructuring of the magnetic Ðeld of the donor
star when it becomes nearly fully convective. This reduction
in the angular momentum loss rate gives the donor an
opportunity to shrink inside of its Roche lobe on a thermal
timescale. Further angular momentum losses due to gravi-
tational radiation cause mass transfer to recommence once
the binary system is brought back into a state of semi-
detachment (see, e.g., RVJ ; Spruit & Ritter 1983 ; Hameury
et al. 1988a for a more detailed explanation). As pointed out
in several places in this work, the actual mechanism that
produces the bloating of the donor and the means by which
mass transfer is interrupted are not central to the conclu-
sions drawn in this paper. What is important in this regard
is that the bloating be sufficiently large as to produce the
observed width of the period gap. For our standard evolu-
tionary model the period gap covers the range of 2.1 \

hr. According to Warner (1995), this syntheticPorb\ 2.85
gap approximates the observed one very well.

We assume that mass and orbital angular momentum are
lost as a result of nova explosions on the surface of the
white dwarf accretor. For our standard model we assumed
that all of the mass that is accreted by the white dwarf is lost
with the same speciÐc angular momentum as the white
dwarf itself (see Schenker, Kolb, & Ritter 1992). Given the
relatively low mass transfer rates, it is likely that the nova
events are extremely hydrodynamic, and thus it is unlikely
that any of the accreted mass actually contributes to
increasing the mass of the white dwarf (see, e.g., Prialnik &
Kovetz 1995 ; StarrÐeld 1998 and references therein).

After a potential cataclysmic variable system has been
generated with the population synthesis code, the two
detached components are given the opportunity to come
into contact, via magnetic braking, within the age of the
Galaxy (minus the CV formation time). However, the initial
mass transfer may actually be unstable, thereby leading to a
common envelope phase (and the ultimate demise of the
binary system). As derived by RJW, the expression for the
long-term mean mass transfer rate in a CV is given by

where the numerator, N, contains theoM0 o /M \ N/D,
drivers of mass transfer, e.g., systemic angular momentum
losses, and the thermal expansion/contraction of the donor
star (see eq. [33] in RVJ). The denominator is given by

D\
CA5

6
] mad

2
B

[ (1[ b)q
3(1 ] q)

[ (1[ b)a(1] q)[ bq
D

,

(10)

where (note that this is the inverse of theq 4 M2/MWDdeÐnition used in RVJ), b is the fraction of the mass lost by
the donor star that is ultimately retained by the white
dwarf, a is the speciÐc angular momentum carried away by
matter ejected from the binary system in units of the binary
angular momentum per unit reduced mass, and is themadadiabatic index of the donor star, i.e.,[d ln (R)/d ln (M)]adFor our standard model (see Table 1), we take b \ 0 (i.e., all

the mass accreted by the white dwarf is eventually ejected in
nova explosions4) and With thesea \M22/(M2] MWD)2.deÐnitions, the above equation reduces to

D\ 5
6

] mad
2

[ q(1] 3q)
3(1] q)

. (11)

As discussed by RJW, stable mass transfer requires N [ 0
and D[ 0. As an example, consider donor stars with M2\
0.3 and In this case, stability (based on eq.M

_
mad\ [13.

[11]) requires that This allows for consider-M2\ MWD.
ably larger values of than the more conventional limitM2for conservative transfer, in which is requiredM2\ 23MWDfor stable mass transfer (with low-mass unevolved donors).
Thus, the mass ratios that appear in our population synthe-
sis can often approach unity or exceed it.

4.3. Generating the Population Synthesis Tracks
We deÐne a birth rate function, BRF(t), for the progenitor

primordial binaries, where t is the elapsed time between the
formation of the Galaxy and the birth of the primordial
binary. If a binary is born at time t, then an additional time

must elapse before the primary evolves to the pointqprimwhere a common envelope phase may occur (see ° 4.1). We
deÐne this time to be the birth time of the incipi-(t ] qprim)
ent CV. The resultant zero-age CV is then evolved in the
binary evolution code for a total time tmax\ (1010[ qprim)
yr, which is the maximum time any CV that is descended
from a similar primordial binary could evolve before the
current epoch. (The binary evolution code starts with the
white dwarf and companion star as they emerge from the
common envelope, so the elapsed time, includes thetev,interval before the donor star Ðlls its Roche lobe.) At each
step in the evolution code, speciÐed by time (with respecttevto the Ðrst time step in the code), we sum in discrete binned
arrays for various combinations of q,Porb, M2, MWD, M0 ,

and the following quantity, *Q :Teff, L 2,

*Q\*t ] BRF(1010 [ qprim[ tev)
N

. (12)

In this expression, the argument of BRF is the time that the
primordial binary was born with respect to the formation of
the Galaxy, *t is the time interval for that particular step in
the evolution run, and N is the total number of systems that
are selected to start the population synthesis run. For all of
the population synthesis runs in this study, the BRF was
taken to be constant in time. Even though we have adopted
a constant stellar birth rate per unit time, the method we use
for generating the CV population at the current epoch is
completely general (see also Kolb 1993).

The net result of this procedure is that the sum of the *Qs
at the end of the population synthesis run, in any particular
bin, represents the number of CVs at the current epoch with
that particular parameter value.

5. POPULATION SYNTHESIS RESULTS

The computed population of current-epoch CVs as gen-
erated by the above techniques is displayed as a sequence of
color images in Figures 3È7. In Figure 3 we show the model
CV population in the plane for our standard modelM-5 Porb

4 See Schenker et al. (1998) for a justiÐcation as to why it is valid to
approximate the ejection of mass in a series of nova explosions with a
constant value of b \ 0.
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FIG. 3.ÈComputed population of cataclysmic variables at the current epoch in the plane for our standard model (see Table 1). Here is the massM-5 Porb M0
transfer rate and is the orbital period. The color represents the logarithm of the number of systems in a particular cell, of which there are 100 perPorb M-5 Porbhour interval in and 100 per decade in The color scale is given on the right-hand side of the Ðgure. We note that the scattered, isolated (red) points inPorb M0 .
the image below the main tracks are minor numerical artifacts of the evolution code that occasionally appear when the Roche lobe makes initial contact with
the atmosphere of the donor star. One of these dots corresponds to only D0.1 CVs in the entire Galaxy at the current epoch, and so is of no signiÐcance.

(see also Fig. 2a). The image is generated in such a way that
the color reÑects the logarithm of the number of current-
epoch CVs at a particular location in the plane. InM-5 Porbeach of the images the color scale is located on the right-
hand side. The image in Figure 3 is composed of 100 pixels
hr~1 intervals in and 100 pixels per decade inPorb M0 .

The most noteworthy features in Figure 3 include the
distinct groups of systems located above and below the
period gap. Note the substantial di†erence in for systemsM0
above and below the period gap ; for the latter systems only

gravitational radiation losses drive mass transfer. The
minimum orbital period min) is also clearly(PminD 65
evident, as are systems that have evolved well past the
minimum period back up to values of hr. It hasPorbD 2
been proposed that these latter systems may be related to
the so-called TOADs (““ tremendous outburst amplitude
dwarf novae ÏÏ ; see, e.g., Howell et al. 1995, HRP). In the
systems above the gap, there is a central band of evolution-
ary tracks (blue and green) where a typical CV is most likely
to be found at a particular point in time during its evolu-
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FIG. 4.ÈComputed population of cataclysmic variables at the current epoch in the plane for our standard model (see Table 1). Here is theR2-Porb R2radius of the donor star. The color represents the logarithm of the number of systems in a particular cell, of which there are 100 per 0.1 and 100R2-Porb R
_per hour interval in The color scale is given on the right-hand side of the Ðgure.Porb.

tion. One also notices very short lived episodes (red and
yellow) of high mass transfer rates. These occur for individ-
ual systems as the donor star Ðrst Ðlls its Roche lobe and
commences mass transfer, but before it can come into a
quasi-steady state of mass transfer (see discussion in ° 2).
The same type of behavior is seen (green structure) for
systems that have come into contact for the Ðrst time below
the period gap, i.e., with initially very low mass donor stars.
The two main tracks (purple) evident in the systems below
the period gap are for He (lower) and CO (upper) white
dwarfs, respectively. We also call attention to the small ver-
tical (blue) feature at hr. This may be related to thePorbD 2

statistically signiÐcant larger number of CVs with periods in
the range of 110È120 minutes (Ðrst pointed out by Hameury
et al. 1988b). Finally, we note that there are systems found
within the period gap, though fewer per period interval than
for systems below the gap. Systems found within the period
gap are typically ones that had initial donor masses of
D0.22È0.34 and commenced Roche lobe overÑow atM

_orbital periods in the range of D2È3 hr (see also Fig. 2 and
its associated discussion).

Further, in regard to the plane shown in Figure 3,M-5 Porbwe point out that for systems above the period gap, the
width of the distribution in at any Ðxed value of isM0 Porb
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only about a factor of D2 (we deÐne the ““ width ÏÏ as con-
taining D80% of the systems). This is in contrast with the
observed spread in for CVs, which is closer to an order ofM0
magnitude (see, e.g., Patterson 1984 ; Warner 1995). One
cause of this spread may be the inherent uncertainty in
translating observed parameters into accurate estimates of

Additionally, some of this discrepancy might be resolvedM0 .
by the inclusion of the e†ects of nova explosions in CVs
which, on a quasi-regular basis, slightly increase (or perhaps
even decrease) the orbital separation (e.g., by da/a D 10~4),
which is sufficient to change appreciably for some inter-M0
val of time (see Shara et al. 1986 ; Schenker et al. 1998 ; U.

Kolb et al. 2001, in preparation). However, we note that
Schenker et al. (1998) showed that, except for extreme
model parameters, the occurrence of the nova explosions
generally does not substantially a†ect the overall secular
evolution of the CVs. Therefore the main results and con-
clusions presented in this work should be robust even
without the inclusion of orbital perturbations due to nova
explosions (we do, in fact, take into account the mass and
angular momentum lost in such events).

The population of current-epoch CVs in the R2-Porbplane for our standard model is shown in Figure 4. The
shape traced out in this Ðgure represents a statistical ensem-

FIG. 5.ÈComputed population of cataclysmic variables at the current epoch in the plane for our standard model (see Table 1). Here is theM2-Porb M2mass of the donor star. The color represents the logarithm of the number of systems in a particular cell, of which there are 100 per 0.1 and 100M2-Porb M
_hr~1 interval in The color scale is given on the right-hand side of the Ðgure.Porb.
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ble of the type of evolutions graphed in Figures 2c and 2f.
The usual features of the ““ upper branch ÏÏ of systems above
the period gap, systems in the ““ lower branch ÏÏ below the
gap, and the minimum orbital period are all represented in
this Ðgure. Again, as in Figure 3, we see that some systems
are formed within the period gap. It is difficult from this
image to judge quantitatively how many systems are in the
gap, versus the density of points just below the gap. This is
quantiÐed later in this section (see Fig. 9). Note that an
extrapolation of the ““ upper branch ÏÏ to shorter orbital
periods would undershoot the ““ lower branch,ÏÏ on which
the stars are close to thermal equilibrium. As discussed in
° 2, this undershooting actually (counterintuitively) results
from the thermal bloating of the donor star when it has a
higher mass loss rate that is driven by magnetic braking. In
particular, see equation (7), in which we show that scalesR2as f ~0.65, where f is the bloating factor. The low-density
features (yellow) just above the main tracks through the
““ upper branch ÏÏ are systems that have just come into Roche
lobe contact for the Ðrst time and have not yet established
a quasi-steady state of mass transfer. The blue-green
““ thumb ÏÏ feature just below the main track of the ““ upper
branch ÏÏ near the top edge of the period gap represents
systems with He white dwarfs and donor stars of compara-
ble mass that have just come into contact. Their mass trans-
fer rates are higher than normal for these orbital periods ;
thus the bloating factors for these donor stars are signiÐ-
cantly larger than for systems on the main track (see also
Fig. 2f ).

Perhaps the most dramatic demonstration of the e†ects
of thermal bloating of the donor star can be seen in Figure
5, which shows the population of current-epoch CVs in the

plane for our standard model. The shape tracedM2-Porbout in this Ðgure represents a statistical ensemble of the type
of evolutions graphed in Figures 2b and 2e. All of the fea-
tures that appear in the image (Fig. 4) also appear inR2-Porbthis image, except in a more exaggerated form. ThisM2-Porbis a direct result of the simple scaling argument summarized
in equation (6) in ° 2, which indicates that the bloating e†ect
on the masses just above the period gap scales as M2P
f ~1.95. A casual inspection of Figure 5 shows that the
masses of the donor stars in CVs with periods just above the
period gap are fully D40% lower than would be expected if
their radius-mass relation followed that of main-sequence
stars. It is this e†ect that we propose be used to discriminate
between the currently held explanation for the period gap
and alternate scenarios. We return to a quantitative dis-
cussion of this issue in the next section.

Lastly, in regard to the color images of the andR2-Porbplanes (Figs. 4 and 5), we comment on the rela-M2-Porbtively large spreads in and for systems above theR2 M2period gap in contrast with those below the gap. As we
showed in equations (6) and (7), for a Ðxed value of the
bloating parameter f, both and are unique functionsM2 R2of the orbital period (which would imply narrow tracks).
For systems well above the period gap, the Kelvin time-
scale, is shorter than the mass-loss timescale,qKH, q

M0
4

but, as the orbital period decreases and approachesM/M0 ,
the period gap, the two timescales become more compara-
ble. Thus, as discussed in ° 2, the donor star must become
ever more bloated so as to establish a luminosity deÐcit,
which in turn enables the donor to contract inside its ever
shrinking Roche lobe. Additionally, the adiabatic stellar
index is changing from positive to negative, and this tends

to make the star expand even further as it loses mass (see
also Beuermann et al. 1998). These two e†ects lead to the
bloating behavior that is seen in Figures 4 and 5. The actual
amount of bloating depends upon the absolute values of the
two constituent masses as well as on the thermal history of
the donor ; therefore, it is to be expected that f may vary
from one donor star to another. As a result, we see not only
enhanced bloating as systems approach the period gap, but
a relatively wider and wider spread in the values of andM2for these systems, especially for in the range of 3È5R2 Porbhr. By contrast, for systems just below the period gap, q

M0increases abruptlyÈby about an order of magnitudeÈ
because the mass transfer is then driven only by gravita-
tional radiation losses (at least according to our model), and
therefore the donor stars can remain much closer to thermal
equilibrium. This allows the systems right below the gap to
establish a nearly main-sequence radius-mass relation (i.e.,
f ^ 1), thereby leading to a relatively narrow set of evolu-
tion tracks. However, as the secondaryÏs mass approaches
the minimum main-sequence mass (before the orbital
period minimum), becomes very long (because of aqKHsharp decrease in the secondaryÏs nuclear luminosity),
thereby causing and to again become approximatelyqKH q

M0equal. Thus, the width of the tracks broadens somewhat
near the orbital period minimum. For systems beyond the
orbital period minimum, the interiors become increasingly
electron degenerate. This leads to a nearly unique mass-
radius relationship which, in turn, leads toR2P M2~1@3,
entirely di†erent and relations than areR2(Porb) M2(Porb)given by equations (6) and (7). Nonetheless, they are unique
relations (easily derivable from eqs. [4] and [5]), which also
lead to a very narrow set of tracks in Figures 4 and 5.

The distribution of expected mass ratios, q, in CVs at the
current epoch is shown as a function of orbital period in
Figure 6. At any given orbital period the range of q-values is
considerably broader than the distribution of values of R2or as can be seen by comparison with Figures 4 and 5.M2,The reason for this is straightforward. Equations (6) and (7)
indicate that, as long as the bloating factor f depends largely
on the orbital period of a CV, then both the radius and
mass are nearly unique functions of the orbital period.
Thus, the much broader distribution of q in Figure 6 is due
largely to the substantial range of masses that the white
dwarf may have, which is much less constrained by the
orbital period than is For both the systems above andM2.below the period gap, the upper set of tracks corresponds to
He white dwarfs, while the lower tracks are for CO white
dwarfs. The period gap is especially conspicuous in this
Ðgure, especially for systems with CO white dwarfs. Note
that some of the mass ratios extend up to values of unity
and, in some cases, above unity. The stability of mass trans-
fer in these systems was discussed in ° 4.2 (see eq. [11]).

The evolution of our model population of CVs in the
and planes is shown in Figure 7.Teff-Porb luminosity-PorbThe left-hand panel displays the e†ective temperature, Teff,of the donor star, while the right-hand panel has a super-

position of the optical (bolometric) luminosity, andL opt,nuclear luminosity, Where the two sets of luminosityL nuc.tracks cross (e.g., near hr) or overlap (e.g., to aPorb\ 1
minor extent between 3 and 6 hr), the default is to display

With regard to the curves, we Ðrst note that theL opt. Teffabsolute temperature scale for our main-sequence stars
(based on our bipolytrope code) is somewhat shifted from
that produced with more sophisticated codes, e.g., our
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FIG. 6.ÈComputed population of cataclysmic variables at the current epoch in the plane for our standard model (see Table 1) ; Theq-Porb q 4 M2/MWD.
color represents the logarithm of the number of systems in a particular cell, of which there are 100 per *q \ 0.1 and 100 per hour interval in Theq-Porb Porb.color scale is given on the right-hand side of the Ðgure.

bipolytrope main-sequence models are D200 K higher than
the DNC models over the mass range of 0.85È0.1 M

_
.

However, aside from this small quantitative di†erence we
are conÐdent that the overall qualitative trends and shapes
of these tracks are highly indicative of the behavior and
properties of the donor through its evolutionary history.
Note that for values of below the gap as well as abovePorb
D5 hr, the tracks are quite narrow, in analogy with theTefftracks in the and planes, since the donorM2-Porb R2-Porbstars are typically quite close to thermal equilibrium. By
contrast, within the period range of 3È5 hr, of theTeffdonors is systematically lowered by up to 250 K compared

with of main-sequence stars at the same This lowerTeff Porb.temperature amounts to a change to a later spectral type (at
a given of D2È4 in decimal subclass. Additionally, wePorb)can see from Figure 7 that, over this same period range, the
use of temperature (or spectral type) to determine the mass
of the secondary star would require very precise measure-
ments, since the expected distribution is relativelyTeff-PorbÑat. We draw two conclusions from this Ðgure : (1) an obser-
vationally produced or spectral relationTeff-Porb typeÈPorbfor CVs should indeed yield a fairly simple shape (especially
when smoothed out by uncertainties in the measurements)
and (2) the use of or spectral type in the 3È5 hr periodTeff
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FIG. 7.ÈComputed population of cataclysmic variables at the current epoch in the plane (left panel) and the plane (right panel)Teff /Porb luminosity-Porbfor our standard model (see Table 1). We show both the stellar luminosity (top curve) and the core nuclear luminosity (lower distributions). The color
represents the logarithm of the number of systems in a particular or cell, of which there are 100 per decade in L , 100 per 500 K in and 100L -Porb Teff-Porb Teff,per hour interval in The color scale for both plots is given on the right-hand side of the Ðgure.Porb.

range will not yield reliable indications of the mass of the
donor star.

Recently, Smith & Dhillon (1988)5 published results that
took a critical look at the relation between orbital period,
spectral type, and secondary mass based on the best obser-
vational data available in the literature. They presented a
relatively smooth spectral typeÈorbital period relation but
concluded that one cannot reliably estimate in anyM2given CV based solely on its spectral type. Our theoretical
results are quite consistent with their conclusion.

The image in the right-hand panel of Figure 7 displays a
superposition of the evolutionary tracks for and asL opt L nucfunctions of For systems above the gap, the highestPorb.luminosity track corresponds to while the two promi-L opt,nent lower (green) tracks are for and are related to theL nuccorresponding features in the image. These twoM2-Porblower luminosity tracks are for systems with CO (upper)
and He (lower) white dwarf accretors (see the discussion of
Fig. 5). The large luminosity deÐcit in the range of 3È5Porbhr, already discussed in ° 2, shows up quite dramatically in
this Figure 7. The group of systems with the highest lumi-
nosity deÐcit (with He white dwarf accretors) has the largest
values of and the donors are the most out of thermalM0
equilibrium (largest bloating factor). In spite of the rela-
tively low values of in this period range, the bolometricL nucluminosity is depressed only modestly (e.g., by factorsL opt

5 The sample used in Smith & Dhillon consisted of what are believed to
be 55 reliable spectral types and 14 reliable secondary star masses. All
systems in their sample have minutes and brighter than D17Porb[ 90 Vminmag, thus Smith & DhillonÏs conclusions about Ðnding no evidence for
postÈperiod minimum systems or very low mass brown dwarf-like second-
aries cannot be drawn from the sample they used.

of over main-sequence stars at the same orbital period.[2)
For systems below the period gap, both luminosities fall o†
dramatically, especially for donor masses below D0.05È0.08

where the donors are already below the hydrogen-M
_

,
burning main sequence, and are cooling toward their ulti-
mate degenerate state. The higher track for all points below
the period gap corresponds to the lower one toL opt, L nuc.While it is formally true that the and tracksL opt L nuc““ cross ÏÏ at D10~4 the two luminosities are never equalL

_
,

in this part of the diagram; they reach the crossing point at
very di†erent times.

Finally, with regard to the color image representations of
CV populations in parameter space, we note that in Figures
3È7, the color represents the logarithm of the numbers of
systems expected at the current epoch. As can be seen in any
of these Ðgures (but especially Figs. 3 and 6), the number of
systems below the period gap outweighs the number above
the period gap by a large margin (by about 100:1 ; see the
more quantitative discussion below; see also de Kool 1992,
Kolb 1993). However, because of observational selection
e†ects, the systems with the shorter orbital periods, lower
values of and generally longer intervals between dwarf-M0 ,
nova outbursts, are more difficult to discover. The exact
factors that go into the observational selection e†ects are
complex, especially since some CVs are discovered via their
dwarf-nova outbursts, others (e.g., longer period CVs) by
their blue colors or Ñickering behavior, and still others by
their nova outbursts. Some of these issues are discussed in
RJW and Kolb (1993). For purposes of the present work we
will indicate only qualitatively how the numbers of obser-
vationally known CVs might be expected to be distributed
by orbital period. We adopt two crude detectability factors
which scale simply as and as The Ðrst of these isM0 3@2 M0 .
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appropriate to steady state accretion luminosities that are
proportional to in the optical bandpass, which give riseM0
to a bolometrically Ñux-limited detectability proportional
to (analogous to the 3/2 slope of a log (N)È log (S)M0 3@2
curve for isotropically distributed sources). The other
scaling, appropriate to the case in which the Ñux in the
optical bandpass is proportional to (see Lynden-BellM0 2@3
& Pringle 1974 ; RJW; Webbink et al. 1987), leads to a
Ñux-limited detectability proportional to Other factorsM0 .
leading to the discovery of CVs, beyond the simple con-
sideration of Ñux limited samples, in particular the de-
tection of dwarf nova outbursts, would undoubtedly
substantially modify the rudimentary dependences on M0
that we use here for purposes of illustration. In Figure 8 we
redisplay Figure 3, but this time rescaled by a factor of ItM0 .

is clear from a casual inspection of Figure 8 that the number
of ““ detectable ÏÏ systems above the period gap is now at
least as great as for those below the gap. The actual quanti-
tative values for this simple scaling are presented below. We
again caution, however, that either an or scaling isM0 3@2 M0
oversimpliÐed.

The color images of parameter space shown in Figures
3È7 can be displayed in a somewhat more quantitative
fashion by projecting the numbers of systems onto the
various axes and plotting the results as simple histograms.
For example, the data used to produce any of the images
can be projected onto the axis to yield the orbitalPorbperiod distribution. The results are shown in Figure 9. The
solid histogram in Figure 9a is the distribution of CVs at
the current epoch in the entire Galaxy for our standard

FIG. 8.ÈSame as Fig. 3, except that the population has been scaled by to crudely take into account observational selection e†ectsM0 1
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FIG. 9.ÈComputed orbital period distributions for cataclysmic variables at the current epoch. L eft panel : the solid curve is the distribution for all systems
that appear in Fig. 3 ; the dashed curve was produced by scaling the contributions of each system evolved by while the dotted curve is for an scalingM0 3@2, M0 1
(see text). The and curves have been shifted vertically by arbitrary amounts for ease in comparison. Right panel : the solid curve is for allM0 3@2- M0 1-scaled
systems in Fig. 3 that have not yet reached orbital period minimum; the dashed curve is for systems that have evolved past the orbital period minimum.

model (see Table 1). The stellar birthrate function and IMF
in our standard model (eq. [8]) are normalized in such a
way that there are D0.6 stars born in the Galaxy per year
with a mass greater than 0.8 just above the thresholdM

_
,

for producing a remnant white dwarf by the current epoch.
Thus, the ““ absolute values ÏÏ of the numbers plotted in
Figure 9 can be appropriately scaled up or down for either
lower or higher assumed birthrates.

If the numbers of CV systems are scaled by the types of
““ observability factors ÏÏ discussed above, before the histo-
gram is produced, the results are the dashed and dotted
histograms superposed in Figure 9a. As discussed above, in
conjunction with Figure 8, this qualitatively helps to
explain the relative numbers of CVs observed above the
period gap compared with the number observed below (see
especially the dotted histogram). Inspection of the com-
pilation of CVs with known orbital periods given in Warner
(1995) reveals that our histogram shown in Figure 9a with
the scaling provides qualitative agreement with currentM0
observational results, especially considering the many
observational selection e†ects that exist (e.g., magnitude-
limited color surveys, large-amplitude but infrequent out-
bursts compared with semiperiodic lower amplitude
outbursts, discovery in X-ray surveys, etc.). The distribu-
tions of orbital period shown in Figure 9b are for systems
that have not yet evolved to the minimum orbital period
(solid curve) and systems that have evolved beyond the
period minimum (dashed curve)Èno scaling in has beenM0
applied here.

The distributions of white dwarf masses and donor
masses at the current epoch are shown in Figure 10 (left-

and right-hand panels, respectively) for four di†erent ranges
of orbital period. The He and CO white dwarfs are easy to
distinguish by mass. Note that for systems with hr,Porb[ 4
which typically have donor stars with masses greater than
0.4 there are few He white dwarfs, since the mass trans-M

_
,

fer would tend to be unstable. The distributions of donor
star masses show a steady trend toward higher masses at
the longer periods, as expected. This results qualitatively
from the fact that the larger orbital periods require less
dense, and therefore usually more massive, stars. Note that
the distributions shown in this Ðgure are not produced with
sufficient resolution in to allow one to make quantitat-Porbive predictions as to what mass donors are needed to vali-
date the basic paradigm for the period gap. Such
information may be found, however, in Figures 5 and 12
and Table 2.

The distribution of mass ratios q is shown(4M2/MWD)in Figure 11 for two di†erent orbital period ranges.
Attempts to determine q observationally can be made from,
for example, superhump period analysis or spectroscopic
analysis. The observational distribution for q in short-
period hr) CVs has recently been compiled(Porb\ 2
(Mennickent, Matsumoto, & Arenas 1999) and is seen
to show an approximate Gaussian distribution with
SqT \ 0.14. However, observational selection e†ects allow
few CVs with small q to be discovered owing to their intrin-
sic faintness. Our results (Fig. 11, top panel) show that the
actual distribution should not drop o† at q values lower
then 0.14, but rather should peak at values of q \ 0.05È0.1,
with an overall distribution that is clearly non-Gaussian.
Discovery and observation of additional faint (short-period)



FIG. 10.ÈComputed distributions of the secondary (right-hand panels) and white dwarf masses (left-hand panels) in cataclysmic variables at the current
epoch. The mass distributions are ordered according to the range of orbital period. The dotted histogram (upper right) is for postÈperiod minimum CVs and
has been arbitrarily divided by 1.5 for presentation purposes.
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FIG. 11.ÈComputed distribution of mass ratios in cataclysmic vari-
ables at the current epoch. The top panel is for systems with orbital periods
in the range of 1È3 hr (which includes all postÈperiod-gap systems), while
the bottom panel is for systems above the period gap.

CVs are needed in order to conÐrm this theoretical predic-
tion.

6. TEST OF THE BASIC PARADIGM

The rapid rate of mass loss for donor stars in CVs just
above the period gap should lead to signiÐcant thermal
bloating of the donor. Thus, in the conventional paradigm
for the formation of the period gap, this mass-loss rate is
abruptly decreased at orbital periods near 3 hr and the
donor star shrinks inside its Roche lobe (see ° 2), leading to
the cessation of mass transfer. SpeciÐc choices of the param-
eters utilized in any such evolutionary model change the
bloating factor quantitatively but do not change the overall
evolution qualitatively. To demonstrate this, we show in
Figure 12 CVs at the current epoch in the plane forM2-Porb

four di†erent sets of model parameters (see Table 1). Figure
12a is for our standard model, while the other panels are for
models where (Fig. 4b) the proportionality constant in the
magnetic braking formula was reduced by a factor of 2

(Fig. 4c) the speciÐc angular momentum carried(CMB\ 12),away by mass lost from the system in nova explosions is
twice that of the white dwarf and (Fig. 4d) all(a \ 2aWD),
mass transferred to the white dwarf is ultimately retained by
the white dwarf (i.e., b \ 1 ; in this somewhat artiÐcial
model, white dwarfs are allowed to exceed the Chandrasek-
har limit).

We see from a study of Figure 12 that the e†ects of
thermal bloating on the mass of the donor stars in CVs for
orbital periods just above the gap are qualitatively similar
for all four models. The actual factors by which the masses
are lower than would be inferred by making the assumption
that the donor has a main-sequence mass-radius relation
range from 25%È50%; the exact range depends on which
model parameters are chosen and whether one includes the
CVs with He white dwarfs where the mass transfer can be
only marginally stable. To quantify the e†ect of thermal
bloating on mass determinations, we have carried out
weighted least-squares Ðts of polynomials to each of the
““ upper branches ÏÏ shown in Figure 12. The results are given
in Table 2, which also includes the evaluation of the poly-
nomial Ðt at hr. As we can see from Table 2, thePorb\ 3
e†ect of thermal bloating on the inferred donor mass of CVs
is quite signiÐcant, and potentially testable, for any of these
models.

We note that, in general, the spread in values of at aM2,given around the best-Ðt curve is substan-Porb, M2(Porb)tially smaller than the mean deviation from an M2(Porb)curve based on the assumption of a main-sequence mass-
radius relation, especially in the crucial period range of 3È5
hr. A large part of this spread is due to the di†erent values of
the mass of the accretor, with lower values of corre-M1, M2sponding to the lower values of (see also the discussionM1in ° 5). However, we do not attempt here to produce Ðts of
the more general form Such Ðts are notM2(Porb, M1).straightforward to construct since, among other things,
there is the added complication of the existence of a
minimum value for at any (due to issues of massM1 Porbtransfer stability ; see ° 4.2). In any case, the main e†ect to be
conÐrmed observationally concerns the substantially
reduced values of just above the period gap (3È5 hr),M2compared to what would be expected if the donor stars
followed a main-sequence mass-radius relation. If sufficient
numbers of high-quality mass determinations of the second-
ary stars can be made, and if this basic e†ect is conÐrmed,
then a secondary goal would be to look for a weak, but
positive, correlation between andM2 M1.

TABLE 2

SUMMARY OF POLYNOMIAL FITS TO RELATIONSaM2-Porb
Modelb c0 c1 c2 c3 M2(Porb\ 3 hr)c

A. Standard model . . . . . . . . . . . . . . . . . . . . . . . . 0.005863 [0.001251 0.02353 0.0 0.214
B. Reduced magnetic braking . . . . . . . . . . . . [0.4323 0.3294 [0.04942 0.005028 0.247
C. High angular momentum losses . . . . . . [0.1829 0.1031 0.01041 0.0 0.220
D. Conservative mass transfer . . . . . . . . . . . [0.5280 0.3856 [0.06261 0.006076 0.230
Main-sequence donor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.35

a For systems with hr. Fits are of the formPorb [ 3 M2\ c0] c1Porb ] c2Porb2 ] c3Porb3 .
b Models are deÐned in Table 1.
c In units of M

_
.
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FIG. 12.ÈSame as Fig. 5, except that in addition to the standard model (a), the results for three other models are shown (see Tables 1 and 2) : (b) reduced
magnetic braking constant ; (c) speciÐc angular momentum lost with the ejected matter is twice that of the white dwarf ; and (d) conservative mass transfer and
retention by the white dwarf.

In Figure 13 we plot the polynomial Ðts that we made to
the upper branches in the plane for the four di†er-M2-Porbent models. For comparison we show the relationM2-Porbthat would be obtained if the donor star followed a main-
sequence radius-mass relation (the one derived from our
bipolytrope code). This set of curves shows quantitatively
how mass determinations based solely on are a†ectedPorbby the thermal bloating e†ect. Note how the e†ect should
go from a maximum at D3 hr to quite small at PorbD 5.5
hr.

Finally, we point out that if, in fact, the period gap is in
any way related to a relaxation from thermal bloating, then
the inferred e†ect on mass determinations based on the
orbital period must be approximately in the range of 25%È
50%. To demonstrate this, we note that in the basic para-
digm for producing the period gap, the system masses do
not change from the upper boundary of the gap to(Pupper)the lower boundary while the radius shrinks from(Plower),its bloated state, characterized by a bloating factor, f, to
nearly its main-sequence radius at the lower edge of the gap.
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FIG. 13.È Secondary (donor) mass, as a function of orbital period. The solid curve is based on the assumption that the donor star Ðlls its Roche lobeM2and has a radius-mass relation appropriate to stars on the main sequence (i.e., eq. [2]) The main-sequence models were generated with the same bipolytrope
code that was used to carry out the binary stellar evolution calculations and are discussed in the text. The dashed curves are polynomial Ðts to the M2-Porbrelations derived from the population synthesis study shown in Fig. 12. The labels (a)È(d) correspond to the four di†erent panels in Fig. 12.

A simple application of KeplerÏs third law for the case of a
Roche lobe Ðlling star (which is true at both the upper and
lower edges of the gap) shows that

f\
APupper
Plower

B2@3
, (13)

where f must range from D1.2È1.3, depending on whether
the period gap is taken to be hr or 1 hr in width, respec-34tively (we have assumed that the gap is centered at 2.5 hr).
From equation (6) we see that this value of f should reduce
the inferred mass, at the top edge of the period gap, by
amounts ranging from D30%È40%, in basic agreement
with our more detailed population synthesis study. (For a
related discussion see Beuermann et al. 1998.)

This type of discrepancy between the mass inferred for a
secondary star, based on the CV orbital period and the
assumption that its radius is that of a main-sequence star,
has probably already led to a number of incorrect mass
determinations reported in the literature, particularly for
systems with between 3È5.5 hr. For example, at anPorborbital period of 3.2 hr, the mass assigned to a CV second-
ary would be 0.35 while our calculations show that itM

_
,

would actually be only 0.26^ 0.02 although bloatedM
_

,
in size. For a known or inferred mass ratio of, say, q \ 0.4,
we would then calculate a white dwarf mass of 0.89 M

_
,

when the true white dwarf mass is only 0.65 Thus,M
_

.
ignoring the bloating e†ect in the secondary stars in CVs
with orbital periods of 3È5 hr can lead to a signiÐcant over-
estimation of both component masses.

It is interesting to note here that the secondary stars that
are farthest from thermal equilibrium are those in systems

with orbital periods just above the period gap (see Figs. 4, 5,
and 13). Observationally, this orbital period region (3È4 hr)
essentially contains only high mass transfer rate, nova-like
(NL) types of CVs. The inferred high mass transfer rates for
these systems would then be expected, on theoretical
grounds, to lead to a large bloating of the secondary stars
and, hence, to lower masses than might otherwise be antici-
pated. Precise observational determinations of the second-
ary star masses in NLs would allow a conÐrmation of this
basic e†ect, which is, in fact, required if the period gap is to
be explained by the interrupted magnetic braking scenario.

Figure 13 provides our theoretical predictions for the
most likely mass of the secondary star at any given orbital
period (see Table 2). Observational determinations accurate
to a few percent would be needed in order to di†erentiate
between the four models presented ; but, accuracies of only
D10% will allow a test of the bloating model in general and
of the predicted deviation of the donor star from the main
sequence. This is a challenging observational project,
however, since the systems with orbital periods in the 3È5 hr
range are ones in which the secondary star is rarely directly
observed. IR spectral studies (e.g., Howell, et al. 2000 ;
Mason, et al. 2000 ; Dhillon et al. 2000) have looked in detail
for the secondary star in a number of CVs with only mar-
ginally successful results. In these CVs, spectral identiÐca-
tion of absorption features due to the secondary star is
difficult since the lines are rotationally broadened and Ðlled
in by radiation from the accretion disk. For the critical 3È5
hr period range, a signal-to-noise ratio of greater than 100
in the continuum will be needed to allow the atomic and
molecular features of the secondary to be observed against
the high background accretion-diskÈdominated continuum.
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We therefore advocate high signal-to-noise, orbital phase-
resolved, near- and mid-IR spectroscopic observations with
large ground-based telescopes (e.g., Gemini, Keck), and
eventually with SIRT F, of sources such as the brightest
NLs and other CVs, which have hr.Porb\ 3È5

7. SUMMARY AND CONCLUSIONS

In this paper we brieÑy reviewed our current understand-
ing of the secular evolution of CVs through their mass
transfer phase, including the currently accepted model for
the 2È3 hr ““ period gap ÏÏ in the orbital period distribution.
The results of evolution calculations for a representative
sample of individual systems are presented, as functions of
both time and orbital period. A population synthesis code,
which starts with some 3 ] 106 primordial binaries, was
then used to generate D2 ] 104 systems that evolve suc-
cessfully through the CV phase of mass transfer. This allows
for a more complete exploration of parameter space. The
results are displayed as probability densities in the M-5 Porb,and planes for CVs atM2-Porb, R2-Porb, q-Porb, Teff/L 2-Porbthe current epoch. This method of displaying the results can
lead to considerable insight into the relationships among
the various system parameters. We Ðnd that for CVs with
orbital periods above 5.5 hr and below the period gap (but
above the period minimum) the secondary stars closely
follow the main-sequence R-M relation (cf. Beuermann et
al. 1998). However, for those with between 3È5.5 hr, thePorbe†ect of bloating causes them to deviate substantially from
this same relation.

Among our more interesting results, we have shown that
the donor star masses in CVs with orbital periods just
above the period gap should be as much as 30%È50% lower
than would be inferred on the assumption that the donor
stars obey a main-sequence radius-mass relation. This con-
clusion is only valid if the basic underlying cause of the

period gap is thermal bloating of the donor star for systems
above the period gap (see °° 1È6). On the basis of our
results, we have proposed a direct observational test of, in
particular, the basic paradigm of the period gap and, more
generally, our overall understanding of the evolution of
CVs. This test involves the challenging, but realistic, task of
making relatively accurate (e.g., 10%) determinations of the
secondary masses in about a half-dozen CVs in the period
range of 3È4 hr. If the masses are consistent with the
assumption of a main-sequence radius-mass relation for the
donor stars, then the currently accepted explanation of
the period gap cannot be correct and the very existence of
the gap would pose a major conundrum. If, on the other
hand, the masses are mostly consistent with the lower
values predicted in this work, then a substantial part of our
basic understanding of the secular evolution of CVs will be
validated.

Previously, much observational attention in CV studies
has been focused on determinations of the white dwarf
masses. While this is clearly of great interest, we hope with
this work to stimulate more interest in the important issue
of determining the secondary masses.
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